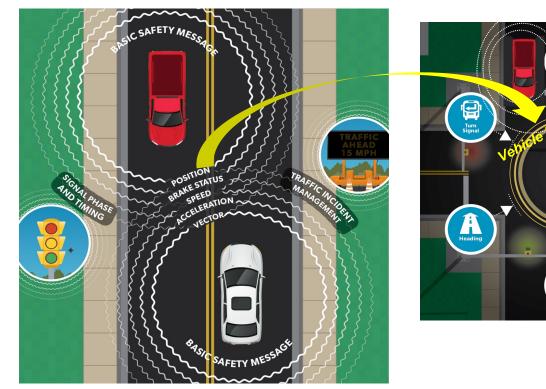


5.9 GHz

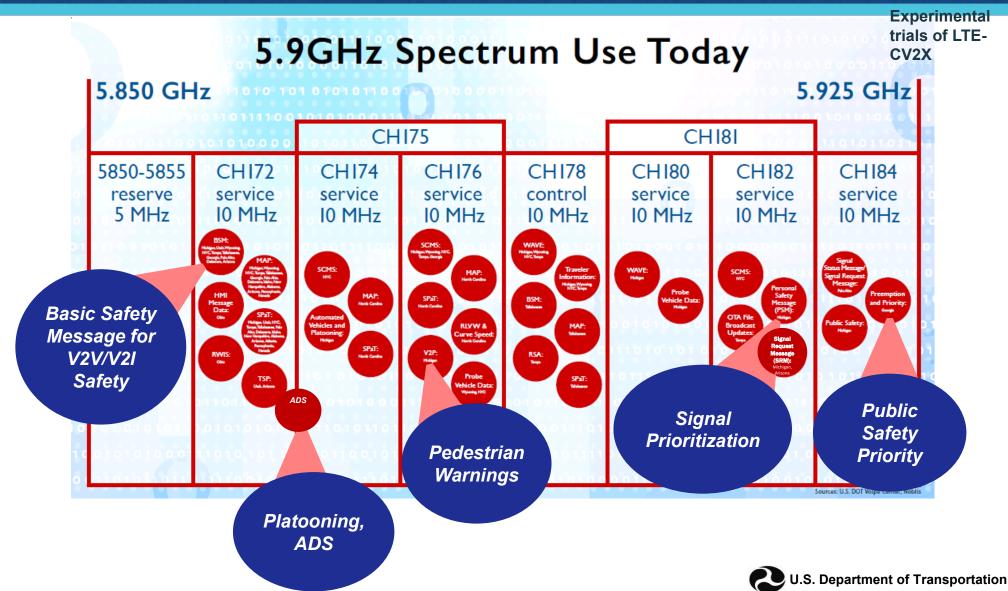
Transportation

Safety Band


Testing

Criticality of Spectrum Availability With No Interference

The "Safety Band" allocation is critical for transportation safety \rightarrow supports the vision of advancing toward a fully connected and automated transportation system.


- The band plan is tailored to meet transportation needs → sharing the band could compromise the speed at which V2V/V2x information is received, putting lives at risk.
- Over 37,000 deaths on our Nation's roads every year \rightarrow it is critical that efforts to free up additional spectrum do not come at the expense of saving lives.


5.9 GHz Safety Band In Use Today

Safety Band Research and Test Program

Phase 2 DSRC-UNII Sharing Testing Plan

- Can DSRC continue to provide safety-critical messages in the presence of unlicensed national information infrastructure (UNII-4) devices? Assess three types of interference:
 - Interference at DSRC receiver that leads to corrupted or no messages received
 - Interference at DSRC transmitter that suppresses message transmission
 - Adjacent/n-adjacent channel interference

Can UNII-4 devices effectively share the Safety Band with DSRC by mitigating potential interference to DSRC operations using the proposed sharing techniques?

- Re-channelization
- Detect & Vacate

Test Metrics

Performance indicators

- Packet Error Rate (PER)
- Data Throughput
- Network Latency or Delay
- Packet Delay Variation (aka, "Jitter")

Specific to <u>Re-Channelization</u> of the Band for DSRC & Unlicensed Wi-Fi

- **Detection Threshold:** Point at which the probability of detecting DSRC signal is equal to or greater than target percentage (90th percentile).
- (Received) Packet Completion Rate (PCR): Ratio of the number of successfully received DSRC packets to number of transmitted DSRC packets.
- (Transmitted) Packet Completion Rate (PCR): Ratio of the number of DSRC packets placed in the transmit queue to number of successfully transmitted DSRC packets.
- Inter Arrival Time (of Received Packets) (IAT): Time between two successive received DSRC packets.
- Inter Departure Time (of Transmitted Packets) (IDT): Time between two successive DSRC transmitted packets.
 U.S. Department of Transportation

Specific to Detect & Vacate with DSRC & Unlicensed Wi-Fi

- **Detection Threshold** at which point probability of detecting DSRC preamble is equal to or greater than certain percentage (90th percentile).
- **Channel-Move Time** or the time between detection of DSRC preamble and start of IEEE 802.11 transmission in a backup channel.
- (Received) Packet Completion Rate (PCR): The ratio of the number of successfully received packets to number of transmitted packets.
- (Transmitted) Packet Completion Rate (PCR): The ratio of the number of packets placed in transmit queue to the number of successfully transmitted packets.
- Inter Arrival Time (of Received Packets) (IAT): The time between two successive received packets.
- Inter Departure Time (of Transmitted Packets) (IDT): The time between two successive transmitted packets.

TEST PROCEDURE OVERVIEW

Adjacent Channel with DSRC in Upper Band

- UNII-4 in 20MHz, 40MHz, 80MHz, 160MHz channels
- DSRC in 10MHz channel (Ch 180)

N-Adjacent Channel with DSRC in Upper Band

- UNII-4 in 20MHz, 40MHz, 80MHz, 160MHz channels
- DSRC in 10MHz channels

Adjacent Channel with DSRC in Lower Band

- UNII-4 in 20MHz and 40MHz channels
- DSRC in 20MHz channel

N-Adjacent Channel with DSRC in Lower Band

- UNII-4 in 20MHz and 40MHz channels
- DSRC in 20MHz channel

USDOT's LTE-CV2X Testing Framework

Operations and Safety Performance tests to assess LTE-CV2X capability to support crash-imminent V2V/V2I safety applications

Interference tests to identify whether there is interference and the magnitude and impacts:

- LTE-CV2X with DSRC
- LTE-CV2X and unlicensed Wi-Fi above the band
- Sensitivity of LTE-CV2X technology to other/existing forms of interference?

Scalability tests to measure the consistency of performance as increasing numbers of LTE-CV2X devices are added

Interoperability tests at the chipset, radio, applications levels for interoperability among different device vendors and chipset manufacturers. Can all makes and models "hear and understand" one another?

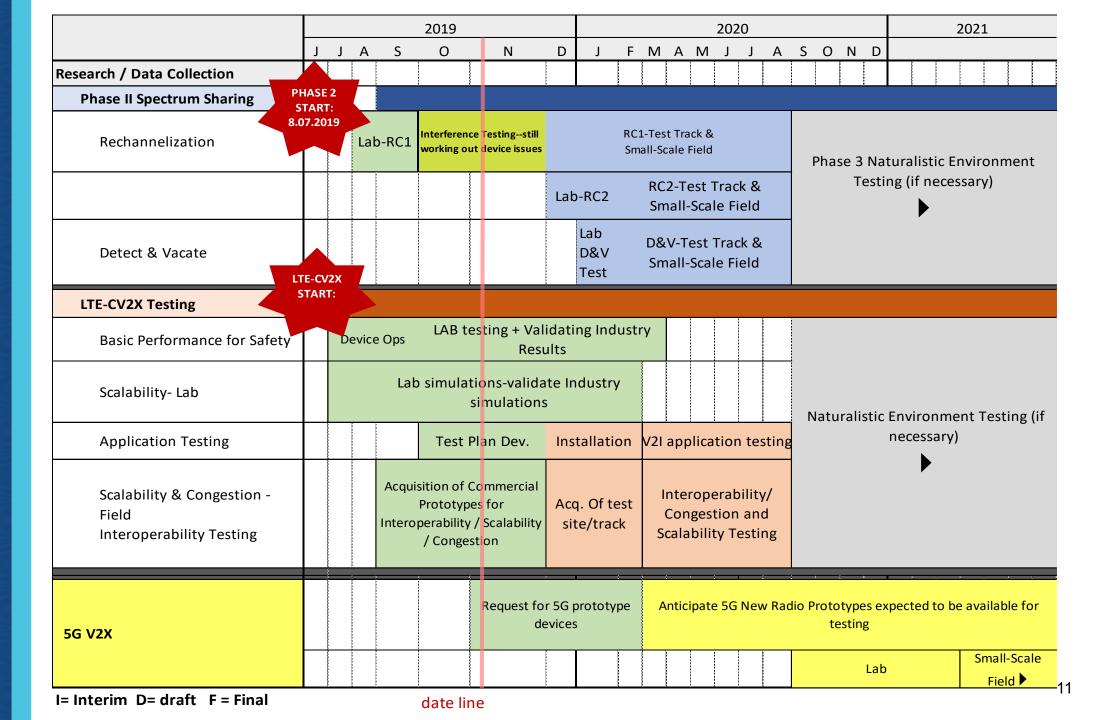
System Dynamics and Congestion testing to assess how LTE-CV2X technology performs in complex, highly dynamic and congested transportation scenarios with varying conditions as well as a range of environmental effects

Validation tests to ensure that the laboratory, field testing and industry simulation and test results are able to be validated.

DSRC-UNII-4 Sharing Testing with Phase 2 has begun:

- First rechannelization devices in testing
- Working to gain access to additional rechannelization devices + detect-and-vacate devices

LTE-CV2X Testing has begun


- □ First devices received in Summer 2019 and set-up for testing at end of August.
- Testing on operability and interference underway
- Working with development platforms; receiving commercial-prototypes and will add them to the testing

5G:

- Monitoring of transportation use cases and device specifications
- Seeking to acquire 5G prototypes (appear to be available in Asia for testing as of this past Fall)
- $\hfill\square$ Assessing 5G's security to meet transportation needs

Planned Test Schedule

For More Information

For Information:

- https://www.transportation.gov/content/safety-band
- https://www.its.dot.gov

<u>Contacts for Testing New</u> <u>Communications Technologies</u>

Jim Arnold, USDOT Spectrum Engineer;

James.A.Arnold@dot.gov

Jonathan Walker, Division Chief,

Knowledge Transfer and Policy, ITS Joint

Program Office;

Jonathan.B.Walker@dot.gov

