BUILD Grants
Better Utilizing Investments to Leverage Development Transportation Discretionary Grants Program

Preparing a Benefit-Cost Analysis

Presented by:
Office of the Under Secretary for Policy
United States Department of Transportation
BCA and BUILD

- All project sponsors should submit a benefit-cost analysis (BCA) as part of their BUILD grant application
- USDOT will consider a project’s demonstrated benefits and costs in evaluating applications
USDOT BCA Review

- USDOT economists will review the applicant’s BCA
 - Examine key assumptions
 - Correct for any technical errors
 - Perform sensitivity analysis on key inputs
 - Consider any unquantified benefits
USDOT BCA Guidance

- Covers all USDOT discretionary grant programs
- June 2018 Update
 - Additional clarification
 - Recommended monetary values
- Available at:

Transparent & Reproducible Analysis

- BCAs should provide enough information for a reviewer to follow the logic and reproduce the results
 - Spreadsheet files showing the calculations
 - Technical memos describing the analysis and documenting sources of information used (assumptions and inputs)
 - Present annual benefit & cost streams by type (not just summary output)
Baselines

- Should measure costs and benefits of a proposed project against a baseline alternative ("base" or "no build")

 "Do’s"
 - Factor in any projected changes (e.g., increased traffic volumes) that would occur even in the absence of the requested project
 - Factor in ongoing routine maintenance
 - Consider full impacts of no build (e.g. bridge closure/posting)

 "Don’t’s"
 - Assume that the same (or similar) improvement will be implemented later
 - Use unrealistic assumptions about alternative traffic flows
Demand Forecasts

- Most benefit estimates depend on ridership or usage estimates

- Provide supporting info on forecasts
 - Geographic scope, assumptions, data sources, methodology

- Provide forecasts for intermediate years
 - Or at least interpolate—don’t apply forecast year impacts to interim years

- Exercise caution about long-term growth assumptions
 - Consider underlying capacity limits of the facility
Analysis Period

- Should cover both initial development and construction and a subsequent operational period
- Generally tied to the expected service life of the improvement or asset
 - I.e., the number of years until you would anticipate having to take the same action again
- Avoid excessively long analysis periods (over 30 years of operations)
 - Use residual value to cover out-years of remaining service life for long-lived assets
Inflation and Discounting

- **Inflation Adjustments**
 - All monetary values in the BCA should be expressed in common base year (recommend using 2017)

- **Discounting**
 - Future cost and benefit streams should be discounted using a 7% rate
Scope of the Analysis

- Clearly define project scope in the application narrative

- Project scope included in estimated costs and benefits must match
 - Don’t claim benefits from an entire project, but only count costs from the BUILD-funded portion

- Scope should cover a project that has independent utility
 - May need to incorporate costs for related investments necessary to achieve the projected benefits

- Project elements with independent utility should be individually evaluated in the BCA
 - BCA evaluation will cover both independent elements and the submitted project as a whole
Benefits

- Should be presented on an annual basis
 - Don’t assume constant annual benefits without a good reason to do so
- Negative outcomes should be counted as “disbenefits”
 - E.g., work zone impacts
Travel Time Savings

- Recommended values found in BCA Guidance
- Consider vehicle occupancy where appropriate
- Avoid double counting travel time savings and other impacts
- If valuing travel time reliability:
 - Carefully document methodology and tools used
 - Show how valuation parameters are distinct from general travel time savings
Operating Cost Savings

- Avoid double counting operating savings and other impacts
 - E.g., truck travel time savings, fuel usage reductions

- Localized, specific data preferred
 - National per-mile values for light duty vehicles and commercial trucks provided in BCA guidance
Safety Benefits

- Typically associated with reducing fatalities, injuries, and property damage

- Projected improvements in safety outcomes should be explained and documented
 - Show clear linkage between project and improved outcomes
 - Use facility-specific data history where possible
 - Justify assumptions about reductions in crashes, injuries, and/or fatalities

- Recommended monetary values found in BCA Guidance
Emissions Reduction Benefits

- For infrastructure improvements, emissions reductions will typically be a function of reduced fuel consumption.

- Recommended unit values for SO$_2$, VOCs, NO$_x$, and PM found in BCA Guidance.
 - Be careful about the measurement units being applied.
Benefits to Existing and Additional Users

- Primary benefits typically experienced directly by users of the improved facility.

- Includes both “existing” users (under baseline) and “additional” users attracted to the facility as a result of the improvement.

- Standard practice in BCA would value benefits to additional users less than those for existing users (see BCA Guidance).
Modal Diversion

- Projected magnitude
 - Should be based on careful analysis of the market and potential for diversion from other modes that might be attributable to the project

- Benefits estimates should not be based on comparing user costs of “old” and “new” mode
 - Would be reflected in benefits to additional users

- Reductions in external costs would be relevant
 - E.g., emissions costs, pavement damage
Difficult-to-Quantify Benefits

Examples

- Resilience
- Noise reduction
- Emergency response improvements
- Property value increases
- Quality of life

Should quantify magnitudes/timing of the impacts wherever possible

Should clearly link specific project outcomes to any claimed unquantified benefits
Capital Costs

- Include all costs of implementing the project
 - E.g., design, ROW acquisition, construction
 - Regardless of funding source
 - Include previously incurred costs
- Present costs in the year they are incurred
 - Apply inflation adjustments correctly (Year of Expenditure (YOE) Costs vs. Base Year Costs)
 - Apply discounting
Maintenance Costs

- Net maintenance costs may be positive or negative
 - New facilities would incur ongoing maintenance costs over the life of the project
 - Rehabilitated/reconstructed facilities may result in net savings in maintenance costs between the build/no-build
Residual Value

- For assets with remaining service life at the end of the analysis period, should calculate a “residual value” for the project.
- Simple approach: assume linear depreciation.
- Be sure to properly apply discounting.
Comparing Benefits to Costs

- Net Present Value (Benefits – Costs)

- Benefit-Cost Ratio (Benefits / Costs)
 - Denominator should only include capital costs (i.e., net maintenance costs and residual value should be in the numerator)
Other Issues

- **Economic Impact Analysis (EIA)**
 - BCA measures the value of a project’s benefits and costs to society
 - EIA measures the impact of increased economic activity within a region attributable to a project
 - EIA represents the translation of “first order” benefits into other economic outcomes—not added benefits to be counted in BCA

- **Transfers**

- **“Avoided” Costs**
More information

- Visit – https://www.transportation.gov/BUILDgrants
- Email – BUILDgrants@dot.gov
- Applications – Must be submitted on or before 8:00 PM E.D.T. on July 19, 2018
Question and Answer Session

BUILD Grants
Better Utilizing Investments to Leverage Development Transportation Discretionary Grants Program

- Increased emphasis on projects located in rural areas
- $1.5 billion ready for projects with a significant local or regional impact
- Apply by July 19, 2018