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ABSTRACT 

Characteristics of the transportation system and built environment contribute to pedestrian 

fatality risks, including vehicular traffic and land-use characteristics associated with higher 

pedestrian activity. We combined data from FHWA, NHTSA, EPA, and the Census Bureau and 

performed regression modeling to explore associations between transportation system and built 

environment characteristics and pedestrian fatalities between 2012 and 2016 at the Census tract 

scale across the United States. In urban tracts, we found especially strong associations between 

traffic on non-access-controlled principal arterial and minor arterial roadways and pedestrian 

fatalities (0.91 and 0.68 additional annual pedestrian fatalities per 100,000 persons per 10,000 

VMT/mi2 increase in traffic density, respectively). In both urban and rural tracts, we also found 

strong associations between employment density in the retail sector and pedestrian fatalities. 

Finally, we compared our model to the High Injury Network in Los Angeles, CA. Nearly half 

(43%) of observed fatalities were identified by both methods, while some fatalities were 

identified by only one (19% by our model and 23% by the High Injury Network). This work 

shows that traffic on certain roadway facility types and employment in certain sectors have 

especially strong associations with pedestrian fatality risk. More broadly, we illustrate how 

leveraging cross-disciplinary data in novel ways can support prospective, risk-based assessments 

of pedestrian fatality risks and support integrated and systemic approaches to transportation 

safety. 



 

 

 

1. INTRODUCTION 

Over the last several decades, traffic fatalities in the United States (US) decreased substantially. 

However, reductions in traffic fatalities have not been shared equally across transportation 

modes. Between 2006 and 2014, yearly motor vehicle occupant fatalities decreased by 27% 

while yearly pedestrian fatalities increased by 3%. Recently, traffic fatalities have risen 

sharply—from 32,744 in 2014 to 37,461 in 2016—and pedestrian fatalities have accounted for 

23% of this increase. (National Center for Statistics and Analysis, 2017a). Pedestrian fatalities 

now account for 16% of all traffic fatalities in the US, the highest percentage on record (National 

Center for Statistics and Analysis, 2017b).  

A range of policies, including infrastructure-based safety improvements, seat belt laws, 

and vehicle safety design standards, have prompted historic reductions in motor vehicle occupant 

deaths (Bunn et al. 2003; Cohen and Einav, 2003). Today, states and metropolitan planning 

organizations (MPOs) are preparing to set non-motorized safety performance targets as required 

under the Moving Ahead for Progress in the 21st Century Act (2012). Further, state and local 

transportation agencies in the US are increasingly integrating pedestrian safety into routine 

practice (Lyons et al. 2014; Singleton and Clifton, 2017). However, transportation agencies often 

retroactively designate high-risk areas to prioritize countermeasures—for example, identifying 

high-risk corridors based on past fatalities (Johansson, 2009). Because pedestrian fatalities are 

relatively rare events influenced by many factors, retrospective approaches may not sufficiently 

characterize pedestrian fatality risk. Further, changes in the built environment and transportation 

system may modify pedestrian fatality risk in ways that could not be anticipated by a 

retrospective approach. Thus, characterizing associations between pedestrian fatality risk and 
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transportation system, built environment, and sociodemographic characteristics may help 

transportation agencies adopt more forward-thinking approaches to reducing pedestrian fatalities. 

Previous studies have sought to characterize pedestrian fatality risk factors at a variety of 

spatial scales. At the facility scale, specific roadway design elements, such as the presence of 

sidewalks and crosswalks, have been shown to reduce pedestrian risks (Conway et al. 2013; Das 

and Sun, 2015; Sarwar et al. 2017). Neighborhood-scale factors, including traffic density, 

sociodemographic factors, population density, and land use have demonstrated associations with 

pedestrian risks (Abdel-Aty et al., 2013; Amoh-Gyimah et al. 2016; Cottrill and Thakuriah, 

2010; Ukkusuri et al. 2011). Finally, regional characteristics, such as percent of the population 

walking to work, have also been associated with pedestrian fatalities (Behnood and Mannering 

2016; Jacobsen, 2003). However, the scalability and generalizability of previous studies are often 

limited. Facility-level studies may use modeled or observed pedestrian and vehicle volumes for 

specific facilities—data that are unavailable at larger scales. Neighborhood-scale studies often 

use measures of exposure that are more widely available but less precise, such as population 

walking to work, and may lack detailed transportation system and/or built environment 

characteristics. Regional-scale studies do not consider small-scale built environment variations 

that shape pedestrian behavior, producing findings that are meaningful in the aggregate but have 

limited usefulness to practitioners seeking to reduce risk in specific contexts. Finally, it can be 

difficult to discern the individual of effects of transportation, built environment, and 

sociodemographic factors on pedestrian fatality risk because lower-income neighborhoods often 

have lower-quality pedestrian environments (Singh et al., 2010). While previous work identified 

many factors associated with pedestrian fatalities, the limited scalability and generalizability of 

previous studies restrict their applicability in real-world decision-making contexts. 
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To address the need for a generalizable pedestrian fatality risk model, we combined 

elements of facility-level studies (fine-scaled transportation system data) and area-wide studies 

(built environment data) with geo-coded pedestrian fatality records from the Fatality Analysis 

Reporting System (FARS) to characterize Census tract scale pedestrian fatality risk across the 

US. We then applied our model to in Los Angeles, CA and compared our estimates to the city’s 

High Injury Network (HIN). To our knowledge, this is the first study to combine high-resolution 

traffic, employment, and built environment data with sociodemographic information to 

characterize neighborhood-level pedestrian fatality risks at the national scale in the US. This 

work could inform the development of risk-based decision-support tools to help proactively 

identify high-risk neighborhoods for pedestrians and support estimates of how changes in the 

built environment and transportation system could shape pedestrian fatality risk. 

2. MATERIALS AND METHODS 

2.1 Urban/Rural Tract Designation 

Because different factors may affect pedestrian fatality risk in urban and rural contexts, we 

stratified tracts into urban (n=50,027) and rural (n=22,711) categories. An urban tract was 

defined as having >50% of its area within Census urbanized areas or having a population density 

greater than 1,000 persons/mi2 (Census Bureau Urban Area Criteria for the 2010 Census, 2011).  

2.2 Data Sources 

We obtained geo-coded pedestrian fatality records, transportation system and built environment 

characteristics, and sociodemographic data for all Census tracts in the US (Table 1).  

2.2.1 Pedestrian Fatalities 

The FARS database contains records of all traffic fatalities that occur in the US (National 

Highway Traffic Safety Administration, 2016). We extracted geo-coded pedestrian fatalities that 
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occurred between 2012 and 2016 from FARS (n=25,615; n=374 records not included due to 

missing geo-coordinates) and assigned records to the Census tract in which they occurred. 

2.2.2 Transportation System 

The Federal Highway Administration (FHWA) Highway Performance Monitoring System 

(HPMS) contains roadway characteristic information for all public roadways in the US and is 

updated yearly (Federal Highway Administration, 2016a). Roadway segments in the HPMS are 

broken into seven functional classifications (FC) based on function and design characteristics: 

FC1) interstates, FC2) other freeways and expressways, FC3) other principal arterials, FC4) 

minor arterials, FC5) major collectors, FC6) minor collectors, and FC7) local roads. FC1 and 

FC2 roadways have full access control while FC3 through FC7 roadways have partial or no 

access control (Federal Highway Administration, 2013). States are required to report annual 

average daily traffic (AADT) to FHWA using uniform methods for all FC1–5 and urban FC6 

roadways; however, states may report AADT on rural FC6, rural FC7, and urban FC7 roadways 

using their own methods (Federal Highway Administration, 2016b). Due to potential variation in 

AADT reporting between states, rural FC6, rural FC7, and urban FC7 roadways were excluded. 

We used HPMS AADT data to calculate average traffic density for all Census tracts in 

the US by functional classification for each year between 2012 and 2016. To do so, we first 

multiplied AADT by segment length to estimate average daily vehicle-miles travelled (VMT) for 

all HPMS segments. Next, we assigned VMT to the Census tract(s) in which road segments are 

located. Roadways often form the boundaries of tracts, presenting two difficulties in accurately 

assigning VMT to tracts. First, HPMS line segments that form tract boundaries may be located 

entirely within one tract or zigzag between adjacent tracts, potentially resulting in arbitrary 

assignment of VMT to tracts. Second, traffic on a roadway that forms the boundary between two 
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tracts likely contributes to pedestrian fatality risk in both adjacent tracts. To more accurately 

assign VMT to tracts, we first generated 50 foot buffers around each HPMS segment and 

calculated VMT density (VMT/mi2) within each buffer 𝑏 for each roadway functional class, 

𝑉𝑀𝑇𝑏,𝐹𝐶. We then calculated the intersecting area between each buffer 𝑏 and each tract 𝑡, 

𝐴𝑏,𝑡 and assigned the value of 𝑉𝑀𝑇𝑏,𝐹𝐶 to each area 𝐴𝑏,𝑡 within buffer 𝑏. Tract-level VMT 

density by functional classification was then calculated by 𝑉𝑀𝑇𝑏,𝐹𝐶 for 𝑛 𝐴𝑏,𝑡 within each tract: 

𝑉𝑀𝑇𝑡,𝐹𝐶

=
∑ 𝐴𝑏,𝑡 × 𝑉𝑀𝑇𝑏,𝐹𝐶

𝑛
𝑖=1

𝐴𝑡
                                                                                                   (1) 

Where 𝑉𝑀𝑇𝑡,𝐹𝐶 is VMT density in tract 𝑡 for functional classification 𝐹𝐶 and 𝐴𝑡 is the 

land area of tract 𝑡. Finally, we combined FC1 and FC2 into a single category (interstates, 

freeways, and expressways) because these functional classifications share full access control.  

2.2.3 Population Walking Behaviors 

Data measuring walking at the national scale are sparse. Reported walking to work is available in 

the American Community Survey (ACS) (Census Bureau, 2016a). However, walking prevalence 

is under-reported in the ACS relative to other surveys that also measure non-commute walking 

(Whitfield et al., 2015). Individuals who commute to work via public transit also walk more than 

the general population (Freeland et al., 2013; Mansfield and MacDonald Gibson, 2016). To 

capture walking prevalence, walking and public transit commuting were obtained from the ACS 

for each year between 2012 and 2016. Additionally, we obtained built environment measures 

with demonstrated associations with walking as proxies for non-commute walking: population 

and employment density, land-use diversity, and physical design (Ewing and Cervero, 2010).  

2.2.4 Population and Employment Density 
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We estimated daily average tract population by averaging ACS-reported (household-based) and 

estimated daytime (work-based) populations as recommended by the Census Bureau (no date): 

𝑃𝑜𝑝𝑡 =
𝑅𝑒𝑠𝑃𝑜𝑝𝑡 + (𝑅𝑒𝑠𝑃𝑜𝑝𝑡 + 𝐹𝑙𝑜𝑤𝐼𝑛𝑡 − 𝐹𝑙𝑜𝑤𝑂𝑢𝑡𝑡)

2
                                                     (2) 

where 𝑃𝑜𝑝𝑡 is the average daily population in tract 𝑡, 𝑅𝑒𝑠𝑃𝑜𝑝𝑡 is the residential (ACS reported) 

population in tract 𝑡, 𝐹𝑙𝑜𝑤𝐼𝑛𝑡 is the sum of commuter flows in to tract 𝑡, and 𝐹𝑙𝑜𝑤𝑂𝑢𝑡𝑡 is the 

sum of commuter flows out of tract 𝑡.Tract-to-tract commuter flows were obtained by 

aggregating block-to-block origin-destination commuting data reported in the Longitudinal 

Employer-Household Dynamics Origin-Destination Employment Statistics (LODES) data 

(Census Bureau, 2016b). 

Tract-level employment density was obtained by aggregating LODES worker area 

comparison data into five employment categories: office (NAICS sectors 51-55 and 92); retail 

(sectors 44-45); industrial, transportation, and warehousing (sectors 11, 21-23, 31-33, 42, and 48-

49); general services (sectors 54, 56, 61-62, and 81); and entertainment, accommodation, and 

food services (sectors 71-72). LODES data were obtained for each year between 2012 and 2015, 

the most recent year for which data are available. 2015 values were used in place of 2016 values. 

2.2.5 Land-Use Diversity 

Land-use diversity measures are typically calculated using local land-use data, such as parcel 

databases. Because detailed land-use data are not uniformly available across the US, we 

calculated a measure of activity diversity within each tract using employment in the categories 

described previously and residential population data (Cervero and Kockelman, 1997): 

𝐴𝐷𝐼𝑡 =
−𝐴𝑡

𝑙𝑛(𝑁𝑡)
                                                                                                                                (3) 

where 𝐴𝑡 = 
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𝑎1,𝑡

𝑎𝑇,𝑡
× 𝑙𝑛 (

𝑎1,𝑡

𝑎𝑇,𝑡
) +

𝑎2,𝑡

𝑎𝑇,𝑡
× 𝑙𝑛 (

𝑎2,𝑡

𝑎𝑇,𝑡
) +

𝑎3,𝑡

𝑎𝑇,𝑡
× 𝑙𝑛 (

𝑎3,𝑡

𝑎𝑇,𝑡
) +

𝑎4,𝑡

𝑎𝑇,𝑡
× 𝑙𝑛 (

𝑎4,𝑡

𝑎𝑇,𝑡
) +

𝑎5,𝑡

𝑎𝑇,𝑡

× 𝑙𝑛 (
𝑎5,𝑡

𝑎𝑇,𝑡
) +

𝑎6,𝑡

𝑎𝑇,𝑡

× 𝑙𝑛 (
𝑎6,𝑡

𝑎𝑇,𝑡
)                                                                                                (4) 

where 𝐴𝐷𝐼𝑡 is the activity diversity index in tract 𝑡, 𝑁𝑡 is the number of activities present in tract 

𝑡, 𝑎1,𝑡 is the residential population in tract 𝑡, 𝑎2,𝑡 is office employment in tract 𝑡, 𝑎3,𝑡 is retail 

employment in tract 𝑡, 𝑎4,𝑡 is industrial, transportation, and warehousing employment in tract 𝑡, 

𝑎,𝑡5 is general services employment in tract 𝑡, 𝑎6, 𝑡 is entertainment, accommodation, and food 

services employment in tract 𝑡, and 𝑎𝑇,𝑡 is total activity (sum of residential population and all 

employment) in tract 𝑡. When calculating 𝐴𝐷𝐼𝑡 for 2016, 2015 LODES data twice in place of 

2016 LODES data. 𝐴𝐷𝐼𝑡 was scaled to range from 0 (no variation between activity categories 

within tract) to 100 (maximum variation). 

2.2.6 Physical Design 

As a proxy for neighborhood physical design, we used two intersection density measures 

obtained from EPA’s Smart Location Database: the density of auto-oriented intersections, 

defined as the intersection of at least two access-controlled facilities, two-way roadways with 

speed limits greater than 55 miles per hour, one-way roadways with speed limits greater than 40 

miles per hour, or arterials with four or more travel lanes in one direction; and the density of 

multi-modal intersections, defined as the intersection of at least two arterials with speed limits 

less than 55 miles per hour when travel is permitted in both directions or less than 40 miles per 

hour when travel is permitted in only one direction, local arterials and streets, or pedestrian 

pathways/trails (Environmental Protection Agency, 2013). 

2.2.7 Sociodemographic Data 
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Census tract median household income, race/ethnicity, percent of zero-vehicle households, and 

the age and sex distribution of the population were taken from the ACS (Census Bureau, 2016a). 

If tract-level data for median household income were missing, county-level data were used.  
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Urban tracts (n=50,027) Rural tracts (n=22,711) 

Mean Median Std. Dev. Mean Median Std. Dev. 

Transportation system variables       

VMT density (thousand VMT/mi2)       

 Interstates, freeways, and expressways 32.4 0 91.2 1.88 0 5.78 

 Non-access-controlled principal arterials 19.4 10.6 30.0 1.26 0.264 2.47 

 Minor arterials  15.6 10.5 17.8 1.01 0.364 1.95 

 Major collectors a 7.16 3.99 10.5 0.749 0.411 0.974 

Built environment variables       

Residential population density (persons/mi2) 7,590 3,870 13,700 188 95.9 221 

Average daily population density (persons/mi2) 7,710 3,820 17,600 179 87.6 212 

Employment density (employees/mi2)       

 Office 660 61.0 7,630 6.90 0.946 30.4 

 Retail 323 93.5 1,790 7.83 1.16 20.2 

 Industrial, transportation and warehousing 427 92.5 3,970 20.7 5.09 50.0 

 General services 1,610 363 11,800 22.1 4.68 50.0 

 Entertainment & food/accommodation services 401 92.5 2,600 7.12 1.00 21.9 

Activity mix index (unitless) 41.4 39.4 21.7 37.9 36.3 17.8 

Intersection density (count/mi2)       

 Auto-oriented intersection 1.73 0.282 3.94 0.210 0.0923 0.333 

 Non-auto-oriented intersections 13.6 9.58 14.3 1.37 0.693 1.74 

Work commute (%)       

 Walk commute 3.47 1.55 6.36 2.30 1.39 3.65 

 Transit commute 7.56 2.39 13.4 0.672 0.165 1.83 

Sociodemographic variables       

Race/Ethnicity (%)       

 Non-Hispanic White 55.1 62.5 30.3 80.0 89.3 21.9 

 Non-Hispanic Black 16.2 5.61 24.0 7.05 1.07 14.1 

 Hispanic 19.1 9.52 22.7 7.78 2.89 13.8 

 Non-Hispanic Asian 6.04 2.57 9.79 1.22 0.382 3.32 

 Non-Hispanic Other 3.08 2.38 3.27 3.42 1.69 8.55 

Age and sex distribution (%)       

 Female, younger than 18 11.1 11.2 3.85 11.1 11.1 2.92 

 Female, 18-24 5.26 4.37 4.99 3.84 3.54 2.29 

 Female, 25-34 7.25 6.94 3.23 5.29 5.18 1.85 

 Female, 35-44 6.50 6.54 1.93 6.00 6.00 1.59 

 Female, 45-54 6.95 7.03 2.12 7.45 7.47 1.87 

 Female, 55-64 6.16 6.15 2.18 7.15 7.10 2.04 

 Female, 65 or older 7.79 7.09 4.72 8.81 8.52 3.48 

 Male, younger than 18 11.6 11.7 3.96 11.7 11.7 3.03 

 Male, 18-24 5.36 4.49 4.86 4.40 3.94 3.19 

 Male, 25-34 7.29 6.80 3.62 5.60 5.27 2.64 

 Male, 35-44 6.42 6.31 2.22 6.12 5.98 2.02 

 Male, 45-54 6.67 6.65 2.14 7.47 7.45 1.99 

 Male, 55-64 5.59 5.54 2.03 7.04 7.01 2.02 

 Male, 65 or older 5.67 5.14 3.59 7.60 7.29 3.21 

Median household income (thousand USD) 60.3 54.7 27.3 55.0 51.2 19.1 

Census tract land area (mi2) 1.70 0.994 2.11 151 42.0 959 

Census tract inhabited land area (mi2) 0.766 0.654 0.529 3.62 3.62 1.24 
a Includes minor collectors in urban areas 

Table 1. Summary Statistics of Explanatory Variables  
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Figure 1. Histogram of pedestrian fatality counts in urban (blue) and rural (orange) tracts 

2.3 Regression Models 

Because pedestrian fatalities are relatively rare events when assessed at the Census tract 

geography, all data were pooled over the five-year study period prior to fitting regression 

models. The resulting distribution of pedestrian fatality counts contain 74% and 77% zero values 

in urban and rural tracts, respectively (Figure 1). A range of models have been applied in the 

literature to address excess zeroes in count data, such as zero-inflated models (Mannering and 

Bhat, 2014). Unobserved heterogeneity, an important potential source of bias in aggregate count 

models, has been addressed using techniques such as random parameter estimation and spatial 

autocorrelation modeling (Amoh-Gyimah et al., 2016; Anastasopoulos, 2016).  

We first estimated negative binomial (NB) models with random effects at the Census 

Combined Statistical Area (CSA) level for urban and rural tracts, using average daily tract 

population, 𝑃𝑜𝑝𝑡, as an offset to convert pedestrian fatality counts to population rates: 

𝜆𝑡 = 𝑒𝑥𝑝(𝑙𝑛(𝑃𝑜𝑝𝑡) + 𝜷𝑿𝒕 + 𝜀𝑡 + 𝜃𝑔)                                                                                      (5) 
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where 𝜆𝑡 is the expected number of pedestrian fatalities in tract 𝑡, 𝑿𝒕 is a vector of explanatory 

variables, 𝜷 is a vector of model parameters, 𝜀𝑡 is an error term, and 𝜃𝑔 is a random effect for 

group 𝑔. The probability density function for 𝑦𝑖 is: 

𝑃(𝑦𝑡) = (
1 𝛼⁄

(1 𝛼⁄ ) + 𝜆𝑡
)

1 𝛼⁄
Γ[(1 𝛼⁄ ) + 𝜆𝑡]

Γ(1 𝛼⁄ )𝑦𝑡!
(

𝜆𝑡

(1 𝛼⁄ ) + 𝜆𝑡
)

𝑦𝑡

                                                 (6) 

Because previous work has noted that zero-inflated models outperform other model types 

when zero counts constitute at least 65% of observed counts, we then estimated zero-inflated 

negative binomial (ZINB) models with CSA-level random effects (Dong et al., 2014). While it is 

not immediately apparent which variables define the zero state in this study, it is feasible that 

zero-state tracts predominantly contain roadways with very few pedestrians or roadways with 

very safe pedestrian environments. We restricted the logit portion of our ZINB models to include 

only variables related to the most proximate causes of pedestrian fatalities—traffic density, 

physical design of the built environment, residential/employment density, and observed 

walk/transit commuting to work. Sociodemographic variables were included only in the 

conditional portion of the model. This model may be expressed as:  

𝑃(𝑦𝑡 = 𝑗) = {
𝜋𝑡 + (1 − 𝜋𝑡)𝑔(𝑦𝑡 = 0)  𝑖𝑓 𝑗 = 0

(1 − 𝜋𝑡)𝑔(𝑦𝑡)  𝑖𝑓 𝑗 > 0
                                                                    (7) 

where 𝑔(𝑦𝑡) is the negative binomial distribution as defined in (6) and 𝜋𝑡 is the logistic link 

function, given by: 

𝜋𝑡 =
𝜇𝑡

1 + 𝜇𝑡
                                                                                                                                      (8) 

where: 

𝜇𝑡 = 𝑒𝑥𝑝(𝑙𝑛(𝑃𝑜𝑝𝑡) + 𝒀𝒁𝒕 + 𝜀𝑡 + 𝜙𝑔)                                                                                      (9) 
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where 𝒁𝒕 is a vector of explanatory variables, 𝒀 is a vector of model parameters, 𝜀𝑡 is a gamma-

distributed error term, and 𝜃𝑔 is a random effect for group 𝑔. 

Finally, we estimated ZINB mixed model (ZINBMM) with random parameters for traffic 

density and residential/employment variables n the conditional portion of the model, grouped by 

CSA, to better address unobserved heterogeneity: 

𝛽𝑡 = 𝛽 + 𝜔𝑖,𝑔                                                                                                                                (10) 

where 𝜔𝑖,𝑔 is a random term for group 𝑔. 

All models were fit using Laplace approximation as implemented in the R package 

glmmTMB (Brooks et al., 2017). Variables were retained in each model if they were significant 

at the 90% level, reduced the model Akaike Information Criterion (AIC), and had a variance 

inflation factor (VIF) of 10 or less. One exception was made for the VIF criteria for the activity 

diversity index, which is derived from other variables in the model and is likely somewhat 

correlated with those variables but has a demonstrated effect on walking behaviors (Ewing and 

Cervero, 2010). Finally, average marginal effects were estimated using the finite difference 

method with Monte Carlo simulation (n=2,000 repetitions) to estimate confidence intervals 

(Cameron and Trivedi, 2009):  

𝐴𝑀𝐸𝑥 =
𝑦2 − 𝑦1

∆
                                                                                                                          (11) 

where 𝐴𝑀𝐸𝑥 is the average marginal effect for a one-unit change in variable 𝑥, 𝑦1 is a vector of 

predicted values for the dataset, 𝑦2 is a vector of predicted values for a dataset with 

increased by ∆, and ∆ is the standard deviation of variable 𝑥 divided by 1,000. 
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3. RESULTS 

3.1 Urban Model 

Overall, the ZINBMM outperformed the ZINB and NB urban models (Table 2). Focusing on the 

ZINBMM, transportation system characteristics have significant associations in the logit and 

conditional portions of the urban model. A 10,000 VMT/mi2 increase in traffic density on non-

access-controlled principal arterials is associated with 124% increase in the likelihood that a tract 

will not be classified as an always-zero tract (Table 2). Similar associations exist between 

pedestrian fatalities and traffic density on other facility types, but with lower magnitude. A 

10,000 VMT/mi2 increase in traffic density on interstates, freeways, and expressways is 

associated with a 30% increase in the likelihood that a tract will be classified as an always-zero 

tract for, a 101% increase for minor arterials, and a 47% increase for major and minor collectors. 

Traffic density is also positively associated with pedestrian fatalities in the count portion 

of the ZINBMM. A 10,000 VMT/mi2 increase in traffic density on non-access-controlled 

principal arterials associated with a 8.8% increase in pedestrian fatalities (Table 2, conditional 

model). A 10,000 VMT/mi2 increase in traffic on interstates, freeways, and expressways, minor 

arterials, and major collectors are associated with a 1.2%, 4.6%, and 2.8%, increases in 

pedestrian fatality counts, respectively. 

Variables characterizing the density of the built environment have significant associations 

with pedestrian fatality risks. The density of retail employment is associated with increased 

likelihood that a tract will be classified as a not-always-zero tract. The density of office, 

industrial, and general services jobs affect the likelihood of being classified as an always-zero 

tract in the opposite direction—a 1-unit change in the square root of hundreds of office jobs/mi2 

reduces the likelihood of being classified as a not-always-zero tract by 12%, 15%, and 6%, 

respectively. Effects of general services and entertainment and food/accommodation services 
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employment density in the conditional model are small, yet statistically significant. In not-

always-zero tracts, a 1,000 person/mi2 increase in residential population density is associated 

with a 0.6% reduction in expected pedestrian fatality counts. (Table 2). 

Remaining built environment variables have mixed associations with pedestrian fatality 

risks. A 10-unit increase in the activity diversity index is associated with a 4.6% increase in 

expected pedestrian fatality counts. The densities of auto-oriented and multimodal intersections 

are associated with 34% and 4.1% increases in the likelihood that an urban tract will be classified 

a not-always-zero tract, respectively. Finally, a 1% increase in the percentage of workers who 

take transit to work is associated with a 8.9% increase in the likelihood that an urban tract will be 

classified a not-always-zero tract (Table 2). 

3.2 Rural Model 

The ZINBMM model provides superior fit compared to ZINB and NB models for rural tracts 

(Table 3). Traffic density has significant associations with pedestrian fatality risk in the logit and 

conditional portions of the ZINBMM. Interestingly, these effects are less variable across 

roadway functional classifications as compared to the urban ZINBMM and are much stronger in 

the logit of the model relative to the conditional stage of the model. A 1,000 VMT/mi2 increase 

in traffic density on interstates, freeways, and expressways is associated with a seven-fold 

increase in the likelihood that a tract will not be classified as an always-zero tract. A 1,000 

VMT/mi2 increase in traffic density on non-access-controlled principal arterials, minor arterials, 

and major collectors is associated with 430%, 290%, and 260% increases in the likelihood that a 

tract will not be classified as an always-zero tract, respectively (Table 3). 

In not-always-zero tracts, traffic density is associated with slight increases in expected 

pedestrian fatality counts. A 1,000 VMT/mi2 increase in traffic density on interstates, freeways, 

and expressways is associated a 2.3% increase in expected pedestrian fatality counts (Table 3, 
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conditional model). On non-access-controlled principal arterials, minor arterials, and major 

collectors, a 1,000 VMT/mi2 increase in traffic density is associated with 6.5%, 3.8%, and 6.2% 

increases in pedestrian fatalities, respectively (Table 3, conditional model).   

Employment density in entertainment and food/accommodation services and general 

services sectors is associated with lower likelihood that a rural tract will be classified as a not-

always-zero tract while retail employment density is associate with increased likelihood that a 

rural tract will be classified as a not-always-zero tract, while retail employment is associated 

with a 8% increase in likelihood (Table 3). A 10-unit increase in the activity mix index is 

associated with a 7.1% increase in pedestrian fatalities in the conditional model while 

employment in all sectors aside from entertainment and food/accommodation services is 

associated with reduced risk (Table 3).   
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 NB Model ZINB Model ZINBMM 

 
Odds 

ratio t-stat 

Odds 

ratio t-stat 

Odds 

ratio t-stat 

VMT density (ten thousand VMT/mi2)       

 Interstates, freeways, and expressways (FC1&2) 1.011 13.63*** 1.008 10.18*** 1.012 7.53*** 

 Standard deviation of parameter density function     0.007  

 Principal arterials, non-access-controlled (FC3) 1.075 24.21*** 1.055 18.31*** 1.088 12.7*** 

 Standard deviation of parameter density function     0.031  

 Minor arterials (FC4) 1.074 13.54*** 1.047 8.57*** 1.046 4.72** 

 Standard deviation of parameter density function     0.038  

 Major collectors (FC5&6) 1.041 4.54*** 1.018 2.04* 1.028 2.48*** 

 Standard deviation of parameter density function     0.020  

Employment density (hundred employees/mi2)       

 General services a 0.989 -7.44*** 0.993 -4.84*** 0.985 -4.64*** 

 Standard deviation of parameter density function     0.008  

 Entertainment and food/accommodation services 1.001 3.70*** 1.001 4.19*** 1.001 3.64*** 

Residential population density (thousand persons/mi2) 0.993 -6.79*** 0.992 -7.61*** 0.994 -1.95*** 

Activity mix index (unitless; per 10-point increase) 1.101 21.68*** 1.062 13.03*** 1.046 6.90*** 

Standard deviation of parameter density function     0.023  

Median household income (thousand USD) 0.989 -19.63*** 0.990 -19.04*** 0.990 -19.4*** 

Race/ethnicity       

 Percent non-Hispanic Black 1.011 22.32*** 1.009 18.53*** 1.009 17.9*** 

 Percent non-Hispanic 1.011 19.66*** 1.010 17.49*** 1.010 17.0*** 

 Percent non-Hispanic Asian 1.008 7.35*** 1.006 6.01*** 1.006 5.85*** 

 Percent non-Hispanic Other 1.017 5.27*** 1.015 4.62*** 1.015 4.81*** 

Age/sex distribution       

 Percent female, 45-54 0.989 -2.19* 0.982 -3.53*** 0.983 -3.33*** 

 Percent female, 55-64 0.992 -1.36 0.987 -2.33* 0.989 -2.06* 

 Percent female, 65+ 0.991 -2.76** 0.990 -3.17* 0.992 -2.72** 

 Percent male, 18-24 0.990 -4.13*** 0.991 -3.89*** 0.991 -3.82*** 

 Percent male, 45-54 1.010 2.25* 1.017 3.54*** 1.016 3.46*** 

 Percent male, 55-64 1.019 3.39*** 1.022 4.07*** 1.021 3.89*** 

 Percent male, 65+ 1.007 1.76^ 1.010 2.56* 1.008 2.22* 

Constant -2.423 -29.74*** -1.918 -22.51*** -1.951 -21.9*** 

Zero-accident state       

VMT density (ten thousand VMT/mi2)       

 Interstates, freeways, and expressways (FC1&2)   1.294 -4.79*** 1.303 -4.48*** 

 Principal arterials, non-access-controlled (FC3)   2.263 -11.26*** 2.239 -9.56*** 

 Minor arterials (FC4)    1.827 -7.71*** 2.008 -7.24*** 

 Major collectors (FC5&6)   1.454 -4.10*** 1.467 -3.59*** 

Employment density (hundred employees/mi2)       

 Office a   0.911 3.24** 0.884 2.41* 

 Retail a   1.907 -4.77*** 2.229 -4.75*** 

 Industrial a   0.834 3.91*** 0.845 1.90^ 

 General services a   0.942 2.40* 0.939 1.94^ 

Intersection density (count/mi2)       

 Auto-oriented intersections   1.281 -3.65*** 1.341 -3.70*** 

 Non-auto-oriented intersections   1.038 -5.20*** 1.041 -4.83*** 

Percent take transit to work   1.076 -3.12** 1.089 -2.82** 

Constant   1.663 3.38*** 1.678 3.18** 

𝐿𝐿(0) -39,636.2 -39,636.2 -39,636.2 

𝐿𝐿(𝜷) -36,674.3 -36,198.2 -36,127.5 

𝐴𝐼𝐶 73,396.5 72,570.4 72,440.9 

Vuong test statistic (versus NB)  3.83** 4.59** 

𝑁 50,027 50,027 50,027 

Nageilkerke R2 0.14 0.16 0.17 
a Variable is square-root transformed ***p<0.001 **p<0.01 *p<0.05 ^p<0.10 

Table 2. Pedestrian Fatality Model Estimated Odds Ratios, Urban Tracts 
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 NB Model ZINB Model ZINBMM 

 
Odds 

ratio t-stat 

Odds 

ratio t-stat 

Odds 

ratio t-stat 

VMT density (thousand VMT/mi2)       

 Interstates, freeways, and expressways (FC1&2) 1.024 10.09*** 1.020 9.74*** 1.023 8.31*** 

 Standard deviation of parameter density function     0.008  

 Principal arterials, non-access-controlled (FC3) 1.075 13.0*** 1.059 11.2*** 1.065 10.8*** 

 Standard deviation of parameter density function     0.013  

 Minor arterials (FC4) 1.035 4.23*** 1.022 3.81*** 1.038 3.03** 

 Standard deviation of parameter density function     0.060  

 Major collectors (FC5) 1.086 5.22*** 1.056 3.49*** 1.062 3.76*** 

Employment density (employees/mi2)       

 Office a 0.875 -3.81*** 0.889 -3.51*** 0.874 -3.33*** 

 Standard deviation of parameter density function     0.044  

 Retail 0.998 -2.00* 0.998 -2.19* 0.999 -1.83^ 

 Industrial a 0.917 -4.48*** 0.934 -3.77*** 0.927 -3.82*** 

 Standard deviation of parameter density function     0.027  

 General services a 0.918 -3.86*** 0.948 -2.46* 0.926 -3.02** 

 Standard deviation of parameter density function     0.051  

 Entertainment and food/accommodation service 1.001 2.27* 1.002 3.53*** 1.002 2.88** 

Activity mix index (unitless) 1.117 11.8*** 1.076 7.78*** 1.071 6.48*** 

Standard deviation of parameter density function     0.025  

Intersection density (count/mi2)       

 Auto-oriented intersections 1.211 3.87*** 1.132 2.76** 1.134 2.62** 

 Non-auto-oriented intersections 1.044 3.75*** 1.030 2.69** 1.024 2.08* 

Median household income (thousand USD) 0.994 -6.00*** 0.993 -7.21*** 0.993 -7.40*** 

Race/ethnicity       

 Percent non-Hispanic Black 1.006 5.19*** 1.007 6.23*** 1.007 6.18*** 

 Percent non-Hispanic 1.007 5.52*** 1.008 6.29*** 1.008 6.26*** 

 Percent non-Hispanic Other 1.014 9.95*** 1.013 8.35*** 1.013 8.21*** 

Age/sex distribution       

 Percent younger than 18 1.016 4.51*** 1.009 2.66** 1.007 2.10* 

 Percent 18-24 1.013 3.68*** 1.010 2.85** 1.009 2.51* 

 Percent 25-34 1.023 4.78*** 1.017 3.64*** 1.017 3.45*** 

 Percent 35-44 1.026 4.15*** 1.017 2.70** 1.015 2.36* 

 Percent 55-65 1.021 3.43*** 1.016 2.62** 1.012 1.88^ 

 Percent male 0.988 -3.57*** 0.991 -2.59** 0.989 -3.01*** 

Constant -3.281 -13.7*** -2.843 -11.5*** -2.594 -10.4*** 

Zero-accident state       

VMT density (thousand VMT/mi2)       

 Interstates, freeways, and expressways (FC1&2)   7.552 -4.89*** 7.346 -4.98*** 

 Principal arterials, non-access-controlled (FC3)   4.041 -6.64*** 4.225 -6.79*** 

 Minor arterials (FC4)    2.957 -5.18*** 2.929 -4.93*** 

 Major collectors (FC5)   2.440 -3.94*** 2.620 -4.03*** 

Employment density (employees/mi2)       

 Retail   1.082 -2.99** 1.083 -2.72** 

 General services a   0.454 4.16*** 0.468 3.89*** 

 Entertainment and food/accommodation service   0.991 3.32*** 0.991 2.98** 

Percent walk to work   0.972 2.22* 0.972 2.20* 

Tribal land; 1 if >33% of tract in tribal area, 0 otherwise   4.195 -3.70*** 4.252 -3.86*** 

Constant   1.841 3.81*** 1.896 3.89*** 

𝐿𝐿(0) -16,225.5 -16,225.5 -16,225.5 

𝐿𝐿(𝜷) -15,194.1 -14,916.2 -14,897.6 

𝐴𝐼𝐶 30,440.2 30,004.4 29,981.1 

Vuong test statistic (versus NB)  2.48** 2.48** 

𝑁 22,711 22,711 22,711 

Nageilkerke R2 0.11 0.14 0.15 
a Variable is square-root transformed ***p<0.001 **p<0.01 *p<0.05 ^p<0.10 

Table 3. Pedestrian Fatality Model Estimated Odds Ratios, Rural Tracts 
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3.3 Average Marginal Effects 

Because it can be difficult to interpret the overall effects of coefficients in zero-infalted models, 

we calculated average marginal effects to illustrate how sensitive our pedestrian fatality risks 

estimates are to changes in traffic density and land use within a tract. Traffic on non-access-

controlled principal arterials and minor arterials pose a particularly strong risk for pedestrians in 

urban areas: the average marginal effect of a 10,000 VMT/mi2 increase in traffic density is nearly 

five times greater on non-access-controlled principal arterials and four times greater on minor 

arterials than on interstates, expressways, and other freeways in urban areas. Increases in VMT 

density on major and minor collectors have intermediate effects, but are not significantly 

different from increases in VMT on interstates, freeways, and expressways. Interestingly, the 

average marginal effect of a 1,000 VMT/mi2 increase in traffic density in rural tracts does not 

vary significantly across roadway functional classifications (Figure 2, Table 4). 

 Urban Model Rural Model 

VMT density (per ten thousand VMT/mi2) a   
 Interstates, freeways, and expressways 0.19 (0.13–0.28) 0.48 (0.21–1.1) 
 Principal arterials, non-access controlled 0.91 (0.66–1.3) 0.40 (0.18–0.83) 
 Minor arterials 0.68 (0.46–1.0) 0.30 (0.13–0.64) 
 Major collectors 0.34 (0.15–0.58) 0.28 (0.12–0.60) 
Population density (per thousand persons/mi2) -0.035 (-0.055– -0.020) - 

Employment density (per hundred jobs/mi2) b   
 Office -0.11 (-0.23– -0.020) -0.056 (-0.14– -0.016) 
 Retail 1.68 (0.90–2.72) 0.017 (0.0030–0.043) 
 Industrial -0.22 (-0.53–0.0055) -0.038 (-0.091– -0.014) 
 General services -0.083 (-0.17– -0.026) -0.091 (-0.22– -0.034) 
 Entertainment and food/accommodation service 0.0066 (0.0028–0.012) -0.0004 (-0.0029–0.0016) 

Activity mix index (unitless; per 10-unit change) 0.38 (0.24–0.60) 0.070 (0.030–0.16) 
Intersection density (count/mi2)   
 Auto-oriented intersection 0.13 (0.062–0.23) 0.12 (0.025–0.30) 
 Non-auto-oriented intersections 0.018 (0.010–0.031) 0.022 (0.0015–0.065) 
a Per thousand VMT/mi2 in rural model  b Per job/mi2 in rural model 

Table 4. Average marginal effects of traffic, population, and employment density variables on 

pedestrian fatality rate (annual rate per 100,000 persons) 

 Average marginal effects reveal particularly strong associations between pedestrian 

fatalities and employment density in certain sectors. In urban and rural tracts, positive 
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associations are seen between employment in the retail sector and pedestrian fatalities. In urban 

tracts, a positive association is also seen between pedestrian fatalities and entertainment and 

food/accommodation services employment while negative associations are seen for office and 

general services employment and residential population density (Figure 2, top right; Table 4). In 

rural tracts, negative associations are seen between office industrial, and general services 

employment and pedestrian fatalities. while residential population density and employment in 

other sectors have negatively associations (Figure 2, bottom right; Table 4). The activity mix 

index is associated with elevated risk in both urban and rural tracts. 

  

  
Figure 2. Average marginal effects of traffic density (left) and population and employment 

density (right) variables on pedestrian fatality rates (annual fatalities per 100,000 persons) for 

urban (top) and rural (bottom) tracts. Whisker lines show 95% confidence intervals.  
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3.4 Comparison to Los Angeles High Injury Network 

To illustrate how the model developed in this paper could complement existing tools, we 

compared how well our model performed relative to the city of Los Angeles’ High Injury 

Network (HIN). Los Angeles developed the HIN as a component of their Vision Zero strategy 

and was recently identified as a focus city for pedestrian safety by FHWA (Federal Highway 

Administration, 2015; Vision Zero Los Angeles, 2017). The HIN was developed by first 

weighting all injuries that occurred between 2009–2013 based on injury severity, with higher 

weights assigned to pedestrians and cyclists injuries. Weighted injuries were then assigned to 

intersections and corridors to develop the HIN (Vision Zero Los Angeles, 2017).  

To compare our model estimates to the HIN, we classified all observed pedestrian 

fatalities from 2012-2016 that occurred within 200 feet of the HIN as “identified by HIN”. We 

then classified all fatalities that occurred in high-risk tracts, defined as tracts in the highest 

quintile of estimated risk nationally, as “in high-risk tract.” Out of 489 pedestrian fatalities, 322 

(66%) were identified by the HIN and 301 (62%) occurred in high-risk tracts. Further, 209 (43%) 

were identified by both models (Figure 3, blue circles), 92 (19%) were identified by our model 

but not the HIN (white circles), 113 (23%) were identified by the HIN but not our model (yellow 

circles), and 75 (15%) were not identified by either method (red circles). Blue circles are 

clustered in certain neighborhoods and yellow circles in others, indicating that each approach has 

advantages in certain contexts. Thus, our model identifies high-risk neighborhoods about as well 

as an HIN; applied in conjunction with an HIN, our model could identify additional high-risk 

neighborhoods. While differences in methods used to develop the HIN and our model preclude a 

true apples-to-apples comparison, this comparison, this comparison highlights the usefulness of 

employing differing approaches to identify pedestrian environments with elevated risks. 
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Figure 3. Comparison of estimated high-risk tracts (red hatching) with the Los Angeles HIN 

(black lines). Clusters of blue dots show neighborhoods where our model better matches 

observed pedestrian fatalities; clusters of yellow dots show neighborhoods where the HIN better 

matches observed fatalities. 
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4. DISCUSSION  

We performed the first national-scale analysis of the associations between tract-level pedestrian 

fatalities, traffic, built environment, and sociodemographic characteristics at the national scale. 

We found especially strong associations between traffic on non-access-controlled principal 

arterials and pedestrian fatalities in urban tracts. While it is known that the plurality of pedestrian 

fatalities occurs on urban arterials, it can be difficult to determine how urban arterials impact 

pedestrian fatality risk independent of their context (Federal Highway Administration, no date). 

By including sociodemographic and built environment variables alongside traffic data, we can 

better understand the contributions of a roadway’s land-use and sociodemographic context on 

pedestrian fatality risks, thereby supporting a more targeted approach to reducing pedestrian 

fatalities on urban arterials. Interestingly, we did not find that non-access-controlled principal 

arterials are more dangerous than other roadways in rural contexts. 

 In urban tracts, we found positive associations between pedestrian fatality risk and 

employment in the retail and entertainment and food/accommodation services sectors. Pedestrian 

activity is likely higher in neighborhoods with greater retail, dining, and entertainment activity. 

Further, these neighborhoods may also be associated with higher prevalence of risky behaviors, 

such as walking and/or driving while intoxicated. In rural tracts, we found positive associations 

with retail employment and negative associations with employment in other categories, 

potentially indicating that retail districts may pose unique risks to pedestrians in rural contexts. 
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 Overall, our findings are aligned with and build on existing findings in the literature. By 

combining characteristics of facility-scale studies (e.g., traffic density by functional 

classification) and neighborhood-scale studies (e.g., employment density be sector) we help 

unify previous findings towards a systemic, risk-based approach to pedestrian safety. Further, 

consistent national findings bolster the external validity of previous studies conducted over 

smaller spatial scales (Abdel-Aty et al., 2013; Cottrill and Thakuriah, 2010; Das and Sun, 2015; 

Noland and Quddus, 2004). Looking forward, our work may support further integration of 

facility- and neighborhood-scale studies within a scalable and generalizable pedestrian fatality 

risk framework (Turner et al., 2017).  

This research can help support data-driven, evidence-based transportation decision-

making at the Federal, state, and local levels. The model developed in this paper could be applied 

as a screening tool to identify high-risk tracts. In jurisdictions with limited resources, this model 

could be applied as a screening tool to identify high-risk Census tracts and help inform resource 

allocation decisions prospectively, rather than in reaction to patterns of past fatalities that may 

not adequately characterize underlying risks given their relative infrequency. In jurisdictions that 

have established pedestrian safety programs, this model could be used to identify high-risk 

neighborhoods that may not be identified using other tools, such as HINs. This model could also 

support forward-looking estimates of how pedestrian fatality risks may change given changes in 

the transportation system and/or built environment, such as shifts in traffic patterns due to new 
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developments or investments in alternative transportation modes. Finally, this model could be 

applied to develop baseline pedestrian fatality risks across a region to support cost-effectiveness 

and/or benefit-cost estimations of countermeasures selected via resources such FHWA’s 

Pedestrian Safety Guide and Countermeasure Selection System or AASHTO’s Guide for the 

Planning, Design, and Operation of Pedestrian Facilities (American Association of State 

Highway and Transportation Officials, 2004; Federal Highway Administration, no date). 

This work has several methodological limitations. First, while we include grouped 

random parameters in the conditional portion of our ZINBMMs, more robust application of 

random parameters models may better account for unobserved heterogeneity not addressed in our 

approach (Anastasopoulos, 2016). While our regression parameters were relatively stable after 

the introduction of grouped random parameters, remaining unobserved heterogeneity may bias 

regression coefficients. Other approaches, such as latent class modeling and spatial 

autocorrelation modeling, have also been used to address unobserved heterogeneity, but we are 

not aware of applications of such techniques to national-scale models with small a spatial unit of 

analysis (Behnood and Mannering, 2016). Future work should assess the validity of such models 

when applied at the national scale to further account for unobserved heterogeneity and test the 

robustness of our results. 

The scarcity of data at the national scale in several key areas presented limitations to our 

work. Pedestrian volumes are not routinely tracked nationally, making it difficult to characterize 
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exposure in assessments of pedestrian fatality risk. New data sources, such as passively collected 

cell phone data, may help transportation researchers and practitioners characterize pedestrian 

volumes in the future. Additionally, non-fatal pedestrian injuries are not consistently tracked 

nationally, leading to many tracts with zero fatalities due to left-censoring of pedestrian injury 

data. Finally, roadway characteristics related to the quality of the pedestrian environment, such 

as the presence and quality of sidewalks and street crossings, are not available nationally. 

Integration of roadway characteristics such presence of sidewalks into databases such as the 

HPMS support further research to better understand of pedestrian fatality risks and the extent to 

which countermeasures improve pedestrian safety. 

5. CONCLUSIONS 

We used ZINBMM to identify the effects of transportation system, built environment, and 

sociodemographic characteristics on pedestrian fatality in urban and rural contexts at the national 

scale. Particularly strong associations were found between traffic on non-access-controlled 

principal arterials in urban areas as well as employment density in the retail sectors in urban and 

rural contexts. In regions that do not have well-established pedestrian safety programs, the model 

developed in this paper could be applied by transportation practitioners to characterize pedestrian 

fatality risks and support targeted, data-driven pedestrian fatalities interventions. In contexts 

where pedestrian safety programs are more advanced, this model could be applied in conjunction 

with existing tools, such as HINs, to more fully characterize high-risk areas. More broadly, this 
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work is a step towards prospective, risk-based frameworks. These frameworks are better suited 

for applications such as supporting cost-benefit analysis or estimating how decisions that shape 

the built environment may influence pedestrian fatality risks than retrospective methods that rely 

on patterns of past pedestrian fatalities. The recent increase in pedestrian fatalities in the U.S. 

calls for integrated, systemic approaches to transportation safety. Prospective risk-based tools, 

like the one developed in this paper, can help transportation practitioners and policy-makers 

make evidence-based decisions on how to best allocate resources to reduce pedestrian fatalities 

in the US. 
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