The effects of roadway and built environment characteristics on pedestrian fatality risk: a national assessment at the neighborhood scale

Office of the Assistant Secretary for Policy
Office of Policy Development, Strategic Planning, and Performance

Theodore Mansfield, PhD
Oak Ridge Institute for Science and Education
Increases in pedestrian fatalities outpace other modes

<table>
<thead>
<tr>
<th>Year</th>
<th>Pedestrian</th>
<th>Bicyclist</th>
<th>In motor vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>4,302</td>
<td>623</td>
<td>27,889</td>
</tr>
<tr>
<td>2011</td>
<td>4,457</td>
<td>682</td>
<td>27,140</td>
</tr>
<tr>
<td>2012</td>
<td>4,818</td>
<td>734</td>
<td>28,003</td>
</tr>
<tr>
<td>2013</td>
<td>4,779</td>
<td>749</td>
<td>27,175</td>
</tr>
<tr>
<td>2014</td>
<td>4,910</td>
<td>729</td>
<td>26,901</td>
</tr>
<tr>
<td>2015</td>
<td>5,495</td>
<td>829</td>
<td>28,926</td>
</tr>
<tr>
<td>2016</td>
<td>5,987</td>
<td>840</td>
<td>30,382</td>
</tr>
</tbody>
</table>

2010-2016:
- 9% increase in fatalities
- 35% increase in pedestrian fatalities
- 39% increase in pedestrian fatalities
Leveraging diverse data sources tells us different things about risk.

- Traffic density, by roadway type (FHWA HPMS)
- Socio-demographic data (Census American Community Survey)
- Built environment data (EPA Smart Location Database & Census LEHD)
- Pedestrian Fatalities (NHTSA FARS)

Integrate spatially: Census tract geography
Data integration enables powerful analysis

- **Methods:** Zero-inflated negative binomial mixed effects regression models w/ random parameters
 - Offset: average daily population (exposure proxy)
 - Separate urban & rural models
- **Outcome:** pedestrian fatality count, 2012-2016
- **Explanatory variables (averaged, 2012-2016):**
 - Traffic density, by functional class
 - Built environment (density, diversity, and design)
 - Sociodemographic factors
Built environment, traffic density variables have significant effects

Urban Tracts, Population and Employment Density Variables

Urban Tracts, Traffic Density Variables

- **FC1 & FC2**: Interstates, expressways, and other freeways
- **FC3**: Non-access controlled principle arterials
- **FC4**: Minor arterials
- **FC5**: Major collectors
- **FC6**: Minor collectors

Legend
- Residential
- Office
- Retail
- Industrial
- Service
- Entertainment
- Activity mix index
- Change in ped. fatality rate per unit change in density
- Change in ped. fatality rate per 10,000 unit change in VMT density
Case study application: model estimates in Los Angeles county
Case study application: model estimates in Los Angeles county
Case study application: comparison to City of Los Angeles high-injury network
Data integration can inform data-driven policy

- Prospective, risk-based framework supports systemic safety approaches
- Supports estimations of how built environment changes may affect risk
- Identifies high-risk neighborhoods; does not identify appropriate interventions
Data integration can be challenging

- State-to-state differences can impact scalability of data transformations
- Some data are unavailable nationally
 - Robust measure of pedestrian exposure
 - Pedestrian injury data
 - Some roadway features (e.g., sidewalks)