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SAFETY-BASED DEPLOYMENT ASSISTANCE FOR LOCATION OF V2I 
APPLICATIONS PILOT:  CURVE SPEED WARNING APPLICATION 

Background 

V2I Applications 
Vehicle-to-Infrastructure (V2I) is a component of the connected vehicles program.  It is a 
wireless-based communication technology in which the exchange of critical operational and 
safety data between vehicles and roadway infrastructure is intended to help avoid crashes.  
Previous research commissioned by the U.S Department of Transportation (DOT) has identified 
eight applications that can provide safety benefits.  Among those applications, Red-Light 
Violation Warning (RLVW), Stop Sign Gap Assist (SSGA) and Curve Speed Warning (CSW) were 
selected for accelerated evaluation.  A prototype CSW application was subsequently developed 
under an agreement between the Federal Highway Administration (FHWA) and the Crash 
Avoidance Metrics Partners, LLC (CAMP). 

Curve Speed Warning (CSW) Application 
The CWS application is one of the V2I accelerated-development applications.  The intent of the 
application is to target crashes on horizontal curves by providing a warning to vehicles 
approaching the curve at an unsafe speed based on the conditions within the curve.  An 
equipped location broadcasts the curve geometry and road conditions.  When an equipped 
vehicle approaches the curve, a vehicle-based application determines if the speed is too high to 
safely negotiate the curve and provides a warning to the driver.  The driver is expected to slow 
the vehicle to safely negotiate the curve.  The application addresses both single and multiple 
vehicle crashes due to lane departure.   

Vehicle Deployment 
The number of vehicles equipped to receive the CSW message will affect the system’s ability to 
prevent crashes.  As more vehicles are equipped, more crashes may be prevented.  The 
National Connected Vehicle Field Infrastructure Footprint Analysis presented estimates for the 
speed of deployment of equipped vehicles in the nation’s vehicle fleet.  The deployment 
scenarios are described as mandates (assuming a requirement is in place) or organic (assuming 
voluntary installation by manufacturers).  Figure 1 presents three scenarios for potential 
deployment over a 25-year period: a 1-year mandate, a 5-year mandate, and a 15-year organic 
implementation.  The 1-year mandate presents the most aggressive deployment with 60 
percent of the vehicles equipped by year 10.  The 15-year organic implementation represents 
the slowest deployment scenario with 20 percent of the vehicles equipped by year 10.  For the 
purposes of this analysis, it is assumed that either a mandate or organic implementation of 
connected vehicle technologies in vehicles will occur beginning in 2020. 
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Figure 1. Three potential vehicle deployment scenarios. 

(Source: National Connected Vehicle Field Infrastructure Footprint Analysis) 

The National Highway Traffic Safety Administration (NHTSA) issued the Vehicle-to-Vehicle (V2V) 
Notice of Proposed Rulemaking on December 20, 2016.  This NPRM proposes to mandate V2V 
communications for new light vehicles over a three-year period, beginning two years after 
issuance of a final rule. 

Infrastructure Deployment 
State DOTs and local transportation agencies will be the primary installers of the infrastructure 
component of the V2I CSW systems.  They will install these systems at horizontal curves with 
the goal of preventing lane departure crashes.  Their selection of curves for deployment of 
these systems will be primarily based on the expected occurrence of speed-related lane 
departure crashes.  These agencies need guidance in identifying locations that have 
experienced these crashes and are expected to continue to experience these crashes unless 
there is an intervention such as the deployment of the CSW system.   

OBJECTIVE 
The objective of this effort was to develop guidance for State and local agencies on how to 
select locations for deployment of the CSW applications to achieve the greatest benefit to cost 
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ratios.  This was accomplished by exploring the occurrence of target crashes, the annual 
fluctuations in crash occurrence by curve, and the costs of the target crashes.   

The selected identification-location method should have the following characteristics: 

• Easy to implement by a State or local agency without rigorous statistical analysis.   

• Applied using no more than five years of data.   

• Results in the identification of those locations with the most opportunity to reduce 
target crashes.   

This effort concentrated on understanding and characterizing the benefits of the application 
expressed as the comprehensive cost savings from preventing crashes based on historical crash 
occurrence or other information available in the crash and roadway inventory files.  

DATA EMPLOYED 
This analysis used crash, vehicle, roadway, and horizontal curve files from the Highway Safety 
Information System (HSIS).  The economic analysis was performed based on crash cost 
information from the FHWA and the Office of the Secretary of Transportation.  These sources of 
data are described in the following sections. 

Curve and Crash Data 

The curve and crash data for this study came as part of HSIS.  The HSIS is a roadway-based 
system maintained by the FHWA that provides quality data on a large number of crash, 
roadway, and traffic variables linked to homogeneous sections of the entire highway system 
under State control.  It is the only multi-State database that allows for the safety analysis of 
roadway design factors, as it is the only file system with the capability to link roadway inventory 
and exposure data to crash data for a large sample of primary route mileage, and the only file 
system to include both roadway sections with and without crashes.  It is important to note that 
HSIS data are only available for State-maintained roadways in each State.  As such, in general, 
HSIS represents more rural areas, because roadways in urban areas are often maintained by a 
municipality.   

Currently, seven States are part of the HSIS:  California, Illinois, Maine, Minnesota, North 
Carolina, Ohio, and Washington.  (Historical data from Michigan and Utah are also available, but 
updated data are no longer captured.)  HSIS also includes the City of Charlotte.  This study 
analyzed data for the 10 most recent years of data for Washington and the three most recent 
years of data for Ohio. 

There are six types of data files available within HSIS.  All States maintain three basic files: a 
crash file, a roadway inventory file, and a traffic volume file.  Additional roadway geometry files 
are also available within selected States, including a horizontal curve file, a vertical grade file, 
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and an intersection and interchange data file.  Washington and Ohio were selected for detailed 
curve analyses, as these States provide curve inventory data files, which are critical to this 
analysis to identify curves and the related crashes. 

The study used ten most recent years of data available for Washington (2004 to 2013).  The 
study also used three most recent years of Ohio data (2011 to 2013).  More years of 
Washington data were necessary for conducting a time series analysis.  All 10 years of data 
were no longer necessary after a recommended time frame had been established and the 
primary analyses only needed the most recent three years of data.  Table 1 presents a summary 
of Washington and Ohio data used for this analysis including the years of data, the number of 
horizontal curves, and the number of crashes at those curves.  A list of elements for each 
dataset is presented in Appendix A.   

Table 1. Summary of HSIS data from Washington and Ohio. 

Variable Washington Ohio 

Years Analyzed (Trend Analysis) 10 (2004 – 2013) N/A 

Years Analyzed (Primary) 3 (2011-2013) 3 (2011-2013) 

Total Curve Segments (single and multiple 
curve segments) 

3,893 7,017 

Single Curve Segments 2,754 3,706 

Multiple Curve Segments 1,139 3,311 

Average Annual Speed-Related Curve Crashes 643 1,698 

Average Annual Fatal and Incapacitating Injury 
Speed-Related Curve Crashes 

58 179 

Average Annual speed-related crashes per 
curve segment 

0.165 0.242 

 

Crash Costs 
The FHWA report Crash Cost Estimates by Maximum Police-Reported Injury Severity within 
Selected Crash Geometries provides mean comprehensive crash costs disaggregated by crash 
severity, location type, and speed limit.(1)  The report is a useful reference for determining the 
cost of crashes and therefore the potential monetized benefits of preventing those crashes.  
However, the values in the report are based on 2001 dollars which are now out of date.  
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Although not disaggregated by severity, location, and speed limit, the FHWA Office of Policy 
provides departmental guidance on valuing reduction of fatalities and injuries by regulations or 
investments.  The most recent guidance was provided in the 2015 memorandum, Treatment of 
the Economic Value of a Statistical Life (VSL) in U.S. Department of Transportation Analyses – 
2015 Adjustment.(2)  These values were used to modify the detailed crash costs by applying a 
proportion (the ratio of the 2015 fatality and the 2001 fatality costs) to the disaggregated 2001 
costs to represent the costs in terms of 2015 dollars.  Table 2 presents the resulting average 
cost per crash by the maximum injury severity in the crash in 2015 dollars.  This cost represents 
all speed limits.   

Table 2. Average cost per crash based on maximum injury severity (in 2015 dollars). 

Maximum Injury Severity in Crash Cost (in 2015 dollars) 

Fatality (K) $9,901,946 

Incapacitating Injury (A) $533,666 

Injury, Non-incapacitating (B) $197,049 

Possible Injury (C) $110,374 

Property Damage Only (O) $18,374 

 

METHODOLOGY 

Identifying Horizontal Curves and Crashes 
The focus of this application is horizontal curves.  Both the Washington and the Ohio HSIS data 
files include a curve file.  The Ohio curve file has data on 18,500 horizontal curves (with degrees 
of curvature less than 90) on inventoried segments in the roadlog file.  The file contains 
information on curve length, degree of curve, and direction of curve.  This file was used to 
identify horizontal curves in Ohio.  Similarly, the Washington curve file contains information on 
approximately 16,200 curves including angle, direction, degree (and radius), length, legal speed 
limit, data of last change to the curve, and whether the curve overlaps with a preceding curve.  
This file was used to identify horizontal curves in Washington.   

These horizontal curve files were linked to the crash, vehicle, and roadway file in each State.  
The crashes occurring on each curve segment and within 250 feet beyond both ends of the 
curve were calculated for each curve.  The research team extended the curve influence area 
beyond the curve begin and ending points. This is to include crashes that may have been the 
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result of the curve but the crash location coded in the database is just outside of the curve or to 
include some consideration for the precision of crash milepost reporting.   

Characterizing Curve Segments 
Curves were characterized as single or multiple-curve segments.  Single-curve segments are the 
curve and their extended portions.  If two or more curves are closely located and their 250 feet 
extended portions overlapped, these curves were combined to form a multi-curve segment.  
This characterization of curves as single or multiple-curve segments was necessary because it is 
not feasible to distinguish between crashes occurring on closely spaced curves.  The project 
team calculated the distance from each segment to the next one using milepost information. 

The research team merged study curve segments (both single curves and multi-curves) with 
roadway data files for the key roadway features and traffic characteristics, including: AADT, 
number of lanes, shoulder width, functional classification, terrain (i.e., level, rolling, mountain), 
and posted speed.  The team reviewed these key characteristics for changes within the multi-
curve segments.  In the Washington dataset, there were a very small number of multi-curve 
segments in which the posted speed changed from one curve to another.  After further 
examination, the team found that only 50 segments (out of 3,893 total segments and 1,130 
multi-curve segments) had varied posted speeds and only 10 of those segments varied by more 
than 10 miles per hour.  The Ohio dataset did not have posted speed information for individual 
curves so the team could not conduct similar examination.  The team decided to retain all these 
segments and used the highest posted speed limit to present the merged segment.  The team 
also removed freeway curves from the dataset. 

Curves were grouped by posted speed (45 mi/hr or lower or 50 mi/hr or higher), single or multi-
curve, and number of lanes (two lanes or four lanes).  Table 3 presents the curve groups for the 
Washington data.  (There were also a small number of curve segments that did not fit into any 
group and were not included in this table.)  The final dataset includes a total of 3,893 non-
freeway curve segments include 2,740 single curve and 1,130 multi-curve segments.  The table 
displays the average annual number of total curve segment crashes for each group.  The single 
and multi-curve groups of four lanes and under 45 mi/hr experienced more annual crashes per 
curve segment than the other groups although both groups are very small.  Generally, groups of 
fewer than 30 curve segments are too small to be representative.  In comparing the data in the 
table, it should be noted that the multi-curve segments are much longer than the single curve 
segments because they include multiple curves.   
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Table 3. Horizontal curve segment groups and crashes in Washington. 

Curve Segment Group 
Number of Curve 

Segments in 
Group 

Average Annual 
Number of Total 

Crashes for Group 

 Average Crashes 
per Curve 

Segment for 
Group 

Single-curve segments with 2 
lanes and speed limit of 45 
mi/hr or lower 

262 150 0.57 

Single-curve segments with 4 
lanes and speed limit of 45 
mi/hr or lower 

18 92.3 5.13 

Single-curve segments with 2 
lanes and speed limit of 50 
mi/hr or higher 

2,366 509 0.22 

Single-curve segments with 4 
lanes and speed limit of 50 
mi/hr or higher 

94 77 0.82 

Multi-curve segments with 2 
lanes and speed limit of 45 
mi/hr or lower 

246 310.7 1.26 

Multi-curve segments with 4 
lanes and speed limit of 45 
mi/hr or lower 

19 107 5.63 

Multi-curve segments with 2 
lanes and speed limit of 50 
mi/hr or higher 

847 440.7 0.52 

Multi-curve segments with 4 
lanes and speed limit of 50 
mi/hr or higher 

18 31.3 1.74 

 

Table 4 presents the same information for the Ohio data.  Similar to the Washington data, the 
single and multi-curve groups with four lanes and speed limits of 45 mi/hr or lower experienced 
more crashes by curve segment.  For the single-curve segment group, there were enough curve 
segments in the group for this to be considered representative.   
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Table 4. Horizontal curve segment groups and crashes in Ohio 

Curve Segment Group 
 

Number of 
Curve 

Segments in 
Group 

Average Annual 
Number of Total 

Crashes for Group 

 Average 
Crashes per 

Curve Segment 
for Group 

Single-curve segments with 2 
lanes and speed limit of 45 mi/hr 
or lower 

599 511.7 0.85 

Single-curve segments with 4 
lanes and speed limit of 45 mi/hr 
or lower 

55 354.7 6.45 

Single-curve segments with 2 
lanes and speed limit of 50 mi/hr 
or higher 

3,008 1,373.3 0.46 

Single-curve segments with 4 
lanes and speed limit of 50 mi/hr 
or higher 

27 78 2.89 

Multi-curve segments with 2 
lanes and speed limit of 45 mi/hr 
or lower 

667 558 0.84 

Multi-curve segments with 4 
lanes and speed limit of 45 mi/hr 
or lower 

21 156.7 7.46 

Multi-curve segments with 2 
lanes and speed limit of 50 mi/hr 
or higher 

2,607 1,601 0.61 

Multi-curve segments with 4 
lanes and speed limit of 50 mi/hr 
or higher 

9 151 16.78 

 

Identifying Target Crashes 
Target crashes for this application are those that can be categorized as run-off-road, rollover, or 
multi-vehicle opposite direction crashes.  These are crashes where one of the crash-involved 
vehicles lost control due to traveling through a curve faster than a safe speed for the condition.  
The vehicle departs its travelled lane and then runs off road or rolls over or collides with 
another vehicle travelling in the opposing direction. 
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In the Washington data files, several variables were used to identify target crashes on the 
candidate curve segments.  The variable for crash location type (LOC_TYPE) and traffic control 
(TRF_CNTL) were used to identify and exclude those crashes coded as related to an intersection 
or a driveway.  The sequence of events (EVENT1, EVENT2) were used to identify those crashes 
that were coded as run-off-road or roll-over (EVENT1, EVEN2=9 for run-off-road and 11 for 
overturn).  Multi-vehicle crashes were identified using number of vehicles involved 
(NUMVEHS>1), accident type (ACCTYPE coded as striking or being struck by another motor 
vehicle), and type of first collision in the crash (COLTYPE1=24-30 for from opposite direction).  
The crashes identified through this process were merged to each horizontal curve segment if 
the crash location identifiers (i.e. roadway/curve inventory code, milepost) put them within the 
curve segment or 250 ft beyond both ends of the segment.  As noted above, the 250 ft 
extension was considered to include crashes that occurred because of the curve but coded as 
outside of the curve (e.g. a vehicle starts losing control inside the curve but keeps going and 
departs the roadway or strikes another vehicle outside the curve).  The resulting set is all run-
off-road, rollover and multi-vehicle opposite direction crashes on horizontal curve segments.   

Using a similar process, the team also identified target crashes in the Ohio data files.  Crash 
location type (LOC_TYPE) was used to exclude intersection or driveway related crashes.  A 
freeway indicator (FRWY_IND) was used to exclude all crashes on freeways.  Variable MISCACT1 
was used to identify the pre-crash actions of the involved vehicles (e.g. going straight ahead, 
overtaking, etc.).  From here, run-off-road and rollover crashes were also identified by using the 
sequence of events (EVENT1, EVENT2) while the identification of multi-vehicle opposite 
direction crashes needed extra information concerning number of vehicles involved 
(NUMVEHS>1) and directions of travel (VEH_N_FROM and VEH_N_TO indicating opposite 
directions).  As in the Washington data, a 250 ft extension beyond the ends of curve was also 
used to attribute crashes to each segment. 

The resulting number of average annual target crashes in Washington and Ohio are presented 
in Table 5.  Using the number of curve segments identified in Table 1, the number of average 
annual target crashes per curve segment is also calculated.  The table also includes the number 
of candidate curve segments with one or more target crashes in the analysis period and the 
average annual target crashes for those curve segments.  Notably, the number of annual target 
crashes is small (i.e., less than one crash per year per segment). 
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Table 5. Average annual target crashes by dataset 

Variable Washington Ohio 

Average Annual Target Crashes  643   1,698  

Average Annual Target Crashes Per Curve 
Segment 

 0.165   0.242  

Number of Curve Segments with One or More 
Target Crashes in Three Years 

 1,148   2,761  

Average Annual Target Crashes per Curve 
Segment for Segments Experiencing One or 
More Target Crashes over Three Years 

 0.560   0.615  

Crash Severity 
Washington and Ohio both use the KABCO scale to identify the maximum reported injury in a 
crash.  Table 6 presents the distribution of maximum injury severity for target crashes and 
other crashes on curve segments for Washington and Ohio.  The totals presented here are for 
three years of data.  Notably, the target crashes are more severe than other crashes in both 
Washington and Ohio with 29 percent of the target crashes in Washington resulting in K or A or 
B, compared to just 12.4 percent of the other crashes and 35.5 percent of the target crashes in 
Ohio resulting in K or A or B, compared to just 15.8 percent of the other crashes.   

Table 6. Summary of crash severity distribution for Washington and Ohio data. 

Maximum Reported Crash 
Severity 

Washington Ohio 

Target 
Crashes 

Other Crashes 
on Curve 
Segments 

Target 
Crashes 

Other Crashes 
on Curve 
Segments 

K (fatal) 53 (2.7%) 24 (0.7%) 87 (1.7%) 40 (0.4%) 

A (incapacitating injury) 121 (6.3%) 80 (2.3%) 449 (8.8%) 305 (3.2%) 

B (non-incapacitating injury) 385 (20.0%) 331 (9.4%) 1275 (25.0%) 1,150 (12.2%) 

C (possible injury) 310 (16.1%) 679 (19.4%) 463 (9.1%) 1,003 (10.6%) 

O (property damage only) 1,059 (54.9%) 2,389 (68.2%) 2821 (55.4%) 6,944 (73.5%) 



11 

 

The research team explored limiting the target crashes used in the selection of candidate 
horizontal curve segments to the more severe crashes (e.g., fatalities and incapacitating 
injuries) since some agencies limit the severities used in their network screening analysis.  
However, the process presented in this report uses all target crashes, a narrowed focus 
compared to total crashes that are generally used in network screening.  Narrowing the focus 
further to include only those target crashes that resulted in fatalities, type A, or type B injuries 
would base the selection on those horizontal curves that had demonstrated the most severe 
target crashes, but would also greatly reduce the sample of curve segments  

Note that crash severity is considered in the calculation of benefit to cost.  The recommended 
use of all severities is to identify those horizontal curves where the target crashes are occurring 
consistently across several years of data.   

Timeframe 
The overall objective of this effort was to develop a method to identify horizontal curve 
segments that were good candidates for the applications based on crash data.  To accomplish 
this objective, a method was needed to identify the timeframe that State and local agencies 
should use in their analysis of candidate curve segments.  In general, curve segment crash 
counts (and target crash counts) fluctuate at any given curve from year to year.  One can reduce 
variation with more years of data, but operational or design changes may have been 
implemented over time.  This is particularly likely at curves that experience a high frequency of 
crashes, as improvements may be implemented in response to crash occurrence. 

Most agencies use historical crash data of some form in their network screening to identify 
locations that are expected to experience future crashes, and therefore require some form of 
remediation.  In a sophisticated analysis, safety performance functions (SPFs) can be developed 
to predict future crashes based on past crashes and other factors such as volume.  An SPF is a 
statistical model developed to estimate the “typical” crash frequency for a specific type of 
roadway entity, based on the traffic volumes and key characteristics.  However, one of the 
goals of this effort was to develop a method that is easy to implement by a State or local 
agency without rigorous statistical analysis.   

An analysis was conducted to select an approach to best identify those horizontal curves that 
were expected to continue to experience crashes and are thus potential candidates for this 
system.  Ten years of horizontal curve data in Washington were used for this part of the 
analysis.  The analysis used the curve segment groups and target crashes described in the 
previous sections.  Additionally, the research team screened out curves with missing traffic 
volume information.   

The final dataset includes a total of 3,893 non-freeway curve segments - 2,754 single curve and 
1,139 multi-curve segments.  All 3,893 segments have AADTs and all other key features related 
to horizontal curve and roadway characteristics.  These are necessary variables for the analyses 
described below.  
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As previously stated, a method is needed to identify those curve segments consistently 
experiencing the target crashes.  Several methods were considered based on the three desired 
characteristics outlined in a preceding section.  The following measures were evaluated, using 
all severities: 

- Annual target crash frequency 

- Two-year target crash frequency 

- Three-year target crash frequency 

- Four-year target crash frequency 

- Five-year target crash frequency 

- Annual total crash frequency 

- Two-year total crash frequency 

- Three-year total crash frequency 

- Four-year total crash frequency 

- Five-year total crash frequency 

- Three-year total wet weather crash frequency 

All eleven measures tested met the first two characteristics (i.e., easy to implement and based 
on no more than five years of data).  

To assess the ability of each method to meet the last characteristic (i.e., results in the 
identification of those locations with the most opportunity to reduce target crashes), a baseline 
measure or ground truth measure was needed for comparison.  Instead of looking at the raw 
crash counts or crash rate, the team used a measure of the potential safety improvement (PSI) 
based on an Empirical Bayes (EB) approach as the baseline.  This is the method recommended 
by the Highway Safety Manual and recent research. 

A PSI is the difference between the expected number of crashes (long term average) for a 
roadway entity (in this case, a curve segment) and the “typical” number of crashes for that 
entity, predicted by a safety performance function (SPF).  An SPF is a statistical model 
developed to estimate the “typical” crash frequency for a specific type of roadway entity, based 
on the traffic volumes and key characteristics.  The EB-adjusted expected number of crashes is 
the long term average for a specific entity after adjusting for regression to the mean and 
random fluctuation over time.  
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EB-adjusted PSI 

𝑃𝑃𝑃𝑃𝐼𝐼𝐸𝐸𝐸𝐸 = 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (1 − 𝑤𝑤) × 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − (1 − 𝑤𝑤) × 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

Where: 

• PSIEB is the potential safety improvement based on the Empirical Bayes method. 
• Nexpected is the expected number of crashes (long term average) for this curve segment, 

corrected by the EB method 
• Npredicted is the average number of crashes predicted by the SPF based on similar curve 

segments  
• Nobserved is the number of observed crashes for this curve segment 
• w is the weight for EB-based correction 

The above descriptions of PSI are illustrated in Figure 2.  More detailed descriptions of the SPFs 
and the EB method are provided in Appendix B. 

 

 

  

 

 

 

 

 

 

 

  

 

 

Two different SPFs were developed, one for single-curve segments and one for multi-curve 
segments.  The categories presented in Table 3 are included in the development as variables.  
The research team estimated model parameters using several functional forms for each group 
of curve segments presented in Table 3.  Two separate SPFs for single-curve and multi-curve 
segments were found to be the best among the options examined.  Each SPF contained traffic 
volume and other curve and roadway characteristics.  Using the SPFs, the team estimated the 
predicted numbers of target crashes (Npredicted), and then calculated the EB-adjusted 
expected numbers of crashes (Nexpected) and the respective PSIs for all 3,893 curve segments.  
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Figure 2. Concept of Potential Safety Improvement (PSI). 
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These segments were then ranked based on PSI as well as the other eleven measures being 
evaluated.  The team followed a fractional ranking approach for breaking ties.  In this approach, 
observations with equal values receive the same ranking number.  This ranking number used in 
these ties is the mean of what they would have been under an ordinal ranking approach (e.g., 
three segments tied for rank 3 would each be given a rank of 4 – the average of ranks 3, 4 and 
5). 

Each of the eleven rankings was compared against the PSI-based ranking.  For each pairing 
between an alternative ranking and the PSI-based ranking, a Spearman’s rank-order correlation 
analysis was used to evaluate how close the alternative rankings are to the PSI method.  

Table 7 shows an example of 10 fictional curve segments based on the PSI ranking and how 
three different alternative ranking measures are compared and evaluated.  The first column is 
the PSI-based rankings.  The second, third and fourth columns show how these same 10 curve 
segments are ranked based on one-year, two-year and three-year crash frequencies, 
respectively.  The bottom row of this table is the Spearman’s coefficients which indicate the 
strength of the statistical association between PSI-based and the other crash frequency based 
rankings.  [Note a higher value of the Spearman’s coefficient indicates a better alternative.]  
With a Spearman’s coefficient of 0.903, the three-year crash frequency-based rankings are 
much closer to the PSI-based rankings than are the two-year rankings and are thus considered 
the better alternative to the ground truth (i.e., the PSI method) in this example.  A more 
detailed discussion of the Spearman’s rank correlation is provided in Appendix C of this report.  
The findings of the ranking comparisons are presented in the Results section below. 
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Table 7. Example of ranking evaluation method based on fictional data 

PSI-based ranking 

1 year crash 
frequency 

ranking 

2 year crash 
frequency 

ranking 

3 year crash 
frequency 

ranking 

1 5 3 1 

2 6 4 2 

3 4 2 5 

4 8 8 4 

5 2 1 3 

6 1 2 7 

7 9 10 6 

8 10 7 9 

9 3 9 10 

10 7 5 8 

Spearman’s Rank Correlation 
Coefficient 0.176 0.485 0.903 

 

Identifying Potential Benefits  
The primary anticipated benefit of the CSW application is the reduction in target crashes and 
the fatalities and injuries resulting from those crashes at horizontal curve segments where the 
systems are used.  This anticipated crash benefit is the focus of this analysis.  As discussed in 
the data section, the cost of a target crash can be monetized by the severity of a crash.  This 
monetary cost of a crash is considered an economic benefit if a crash is avoided by the CSW 
application.   

Differences in Candidate Curve Segments 
The curves identified as priority candidates for the CSW application were reviewed to identify 
differences in these curve segments compared to other curve segments in the State.  
Specifically, the following characteristics were explored: 

• Volume. 

• Functional class of major roadway. 

• Speed. 

• Area type (i.e., urban or rural).  
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• Single or multi-curves. 

• Degree of curvature.   

This information may be useful to FHWA, States, and other agencies for future efforts in 
analyses of safety issues and design of countermeasures.  Additionally, for this application, it 
could also be used to inform systemic applications of this treatment based on the curve 
characteristics (e.g., the treatment of all curves above a certain volume and/or above a 
specified degree of curvature).  The findings of the comparison are presented in the Results 
section below.   

RESULTS 
The following sections present the results of Washington and Ohio data analyses, including the 
identification of critical horizontal curve segment types, the selection of a timeframe for use in 
the identification of candidates, the identification of the top ranked curve segments in each 
State, potential deployment scenarios for each State, and a comparison of candidate curve 
segments to other curve segments.   

Critical Curve Segment Types 
Table 8 presents the average annual target crashes for each of the eight curve segment groups 
in Washington that were introduced in Table 3.  This table is limited to those curve segments 
that experienced one or more target crashes during a three-year period.  The number of curve 
segments in each group is also displayed in the table.  The majority of the groups averaged less 
than one target crash per year per curve segment.  The table also provides an average cost per 
target crash based on the average severity distribution of the target crashes in the group and 
the average cost per crash severity presented in Table 2.  The average annual number of target 
crashes is multiplied by the average cost of the target crash to get the average annual costs of 
target crashes per curve segment for each group in the final column.   

The multi-curve segments generally represented higher average target crash cost and average 
overall higher average annual costs for the segments.  The multi-curve segments with four 
lanes and speed limits over 50 mi/hr had the highest target crash cost and average segment 
costs.  However, this group only included ten curve segments, much smaller than the 30 
segments suggested as a minimum above.   
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Table 8: Average annual target crashes and average cost by curve segment group in 
Washington for segments with at least one target crash (number of segments in 

parentheses.) 

Curve Segment Group 

(number of curve segments in group 
with at least one target crash) 

Average Annual 
Number of 

Target Crashes 

Average 
Cost of 
Target 
Crash 

Average Annual 
Curve Segment 

Target Crash 
Costs  

Single-curve segments with 2 lanes and 
speed limit of 45 mi/hr or lower (79) 

0.553  $230,946   $127,654  

Single-curve segments with 4 lanes and 
speed limit of 45 mi/hr or lower (6) 

0.667  $149,355   $99,570  

Single-curve segments with 2 lanes and 
speed limit of 50 mi/hr or higher (523) 

0.437  $362,817   $158,631  

Single-curve segments with 4 lanes and 
speed limit of 50 mi/hr or higher (51) 

0.686  $173,611   $119,145  

Multi-curve segments with 2 lanes and 
speed limit of 45 mi/hr or lower (115) 

0.748  $324,684   $242,807  

Multi-curve segments with 4 lanes and 
speed limit of 45 mi/hr or lower (13) 

0.718  $469,250   $336,898  

Multi-curve segments with 2 lanes and 
speed limit of 50 mi/hr or higher (339) 

0.641  $458,139   $293,714  

Multi-curve segments with 4 lanes and 
speed limit of 50 mi/hr or higher (10) 

1.233  $608,645   $750,662  

 

Table 9 presents similar information for Ohio.  As with the Washington data, only those curve 
segments that experienced one or more target crashes in a three-year period are included in 
the table.  For groups with more than 30 curve segments, the average annual curve segment 
target crash costs are generally consistent between $144,000 and $200,000.   
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Table 9. Average annual target crashes and average cost by curve segment group in Ohio for 
segments with at least one target crash (Number of segments in parentheses.) 

Curve Segment Group 

(number of curve segments in group 
with at least one target crash) 

Average 
Annual 

Number of 
Target Crashes 

Average Cost 
of Target 

Crash 

Average 
Annual 
Curve 

Segment 
Target Crash 

Costs  

Single-curve segments with 2 lanes and 
speed limit of 45 mi/hr or lower (212) 

0.593  $293,907   $174,218  

Single-curve segments with 4 lanes and 
speed limit of 45 mi/hr or lower (30) 

0.811  $245,347   $199,003  

Single-curve segments with 2 lanes and 
speed limit of 50 mi/hr or higher (995) 

0.517  $335,159   $173,250  

Single-curve segments with 4 lanes and 
speed limit of 50 mi/hr or higher (12) 

0.639  $49,891   $31,875  

Multi-curve segments with 2 lanes and 
speed limit of 45 mi/hr or lower (297) 

0.669  $215,894   $144,414  

Multi-curve segments with 4 lanes and 
speed limit of 45 mi/hr or lower (16) 

0.563  $829,714   $466,714  

Multi-curve segments with 2 lanes and 
speed limit of 50 mi/hr or higher (1,178) 

0.678  $259,934   $176,232  

Multi-curve segments with 4 lanes and 
speed limit of 50 mi/hr or higher (9) 

1.222  $53,789   $65,743  

 

Selection of Timeframe and Candidate Curve Segments 
As discussed in the methodology section, eleven measures were explored to determine the 
best method for State and local agencies to use crash data to identify candidate locations for 
CSW systems.  The eleven different measures tested using Washington data included:  

- Annual target crash frequency 
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- Two-year target crash frequency 
- Three-year target crash frequency 
- Four-year target crash frequency 
- Five-year target crash frequency 
- Annual total crash frequency 
- Two-year total crash frequency 
- Three-year total crash frequency 
- Four-year total crash frequency 
- Five-year total crash frequency 
- Three-year total wet weather crash frequency 

As noted in the Methodology section, in this analysis, all 3,893 curve segments were ranked 
using the PSI-based method and each of the alternative methods.  The research team also 
performed an additional analysis using only the top 10 percent of segments based on PSI-
ranking.  The following table shows the Spearman’s rank correlation coefficients between PSI-
based rankings and the rankings based on the eleven options for the entire dataset and a 
subset of PSI-based top 10 percent. 
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Table 10. Comparison of eleven methods to PSI-based method for identifying priority curve 
segments. 

 

Spearman’s 
coefficient 
based on all 
curve 
segments 

Spearman’s 
Coefficient 
based on top 10 
percent of PSI-
ranked curve 
segments 

1 year target crash frequency rankings 0.377 0.310 

2 year target crash frequency rankings 0.501 0.406 

3 year target crash frequency rankings 0.588 0.810 

4 year target crash frequency rankings 0.484 0.766 

5 year target crash frequency rankings 0.399 0.728 

1 year total crash frequency rankings 0.168 0.338 

2 year total crash frequency rankings 0.238 0.465 

3 year total crash frequency rankings 0.274 0.679 

4 year total crash frequency rankings 0.198 0.652 

5 year total crash frequency rankings 0.150 0.634 

3 year total wet weather crashes frequency rankings 0.177 0.337 

 

The results show the rankings based on three-year target crash frequency are the closest to the 
ones based on PSI (i.e., the largest Spearman’s rank correlation coefficient).  The results suggest 
the three-year target crash frequency is a better representation of the long term average than 
other alternatives, including the four-year and five-year averages.  This could be a result of a 
greater chance of changes in operational and design characteristics in the longer time periods. 

The EB-based PSI approach is considered a more reliable estimate of the long-term safety 
performance of an entity.  If an agency has the resources and capability, this approach can 
provide more reliable results than average crash frequency alone.  It is more sophisticated and 
reliable.  However, it is not suggested for use by the agencies unless they have the resource and 
capability to perform this type of EB-based analysis.  The EB-based approach violates the first 
among three desired characteristics: ease of implementation.  Based on the analysis results, the 
three-year crash frequency method holds the most promise for providing a reliable method 
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that achieves the desired characteristics and the results indicate it is sufficient to use the three-
year average.   

Based on this three-year frequency of target crashes, the curve segments in each dataset were 
ranked in priority order for implementation. 

Demonstration of Benefits 
As previously discussed, the anticipated benefit of the CSW systems is the monetized benefit of 
a reduction in target crashes.  The potential economic benefit of a system for a specific 
candidate curve segment will be influenced by the number and severity of expected target 
crashes, the effectiveness of the system in preventing target crashes, and the deployment of 
equipped vehicles.  This is best demonstrated by selecting example curve segments from each 
dataset and calculating the expected benefit.   

The following section presents four examples, two for each dataset for Washington and Ohio: 

• Table 11 presents a curve segment in Washington with 5 Target Crashes per year on 
average.  The example assumes that vehicle deployment follows the 5-Year Mandate 
presented in Figure 1.   

• Table 12 presents curve segment in Ohio with 8 Target Crashes per year on average.  
The example assumes that vehicle deployment follows the 5-Year Mandate presented 
in Figure 1. 

• Table 13 presents the same Washington curve segment with 5 Target Crashes per year 
on average that was presented in the first example.  However, this example assumes 
that vehicle deployment follows the 15-Year Organic penetration presented in Figure 1.   

• Table 14 presents the same Ohio curve segment with 8 Target Crashes per year on 
average that was presented in the second example.  However, this example assumes 
that vehicle deployment follows the 15-Year Organic penetration presented in Figure 1.   

The start of system installation and vehicle penetration in all four examples is assumed to be 
2020.  For each scenario presented, the system is assumed to be 95 percent effective in 
reducing crashes when communicating with an equipped vehicle.  Complete effectiveness (i.e., 
100 percent) was not used because there may be some drivers who receive the warning 
message but do not heed the message and reduce their speed.  

The examples assume that total and target crashes would continue at current levels for each 
curve segment without the installation of the system.  Therefore, every year the same number 
of target crashes would be expected without the intervention.  This assumption is a 
simplification intended for illustrative purposes.  In reality, many other factors may affect the 
occurrence of crashes on a curve, such as changes in traffic volume or weather conditions. 
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The tables provide the total anticipated crashes prevented.  These are represented to the 
nearest tenth.  In reality, a tenth of a crash prevented is not possible (i.e., either a crash is 
prevented or it occurs).  However, the table is intended to demonstrate the benefit that can be 
achieved over the twenty year period.  The tables also provide the crash cost savings (based on 
the distribution of severity at the example curve segment) and the percent of target crashes 
reduced each year.   

The number of crashes anticipated to be prevented increases each year the system is in place 
because there is an increase in the penetration of connected vehicle technologies in the vehicle 
fleet in subsequent years.  As would be expected, the 5-year mandate results in more crashes 
being prevented sooner as a result of more aggressive penetration.   

Note that all of the costs presented in these examples are presented in 2015 dollars.  Inflation is 
not considered, again for simplification of the examples. 
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Table 11. Estimated number of crashes prevented and crash cost saved over time  
with 5-year mandate deployment scenario on a curve segment and  
with 5 target crashes expected without intervention (Washington). 

Year 
Deployment 

(percent) 
Total crashes 

prevented 
Crash cost 

saved 
Percentage 

2020 0.22 0  --   -- 

2021 1.79 0.1  $11,888  1.7% 

2022 5.34 0.3  $35,464  5.1% 

2023 10.33 0.5  $68,604  9.8% 

2024 16.08 0.8  $106,792  15.3% 

2025 22.14 1.1  $147,038  21.0% 

2026 28.29 1.3  $187,882  26.9% 

2027 34.42 1.6  $228,593  32.7% 

2028 40.43 1.9  $268,507  38.4% 

2029 46.25 2.2  $307,159  43.9% 

2030 51.84 2.5  $344,284  49.2% 

2031 57.14 2.7  $379,482  54.3% 

2032 62.10 2.9  $412,423  59.0% 

2033 66.70 3.2  $442,973  63.4% 

2034 70.92 3.4  $470,999  67.4% 

2035 74.76 3.6  $496,502  71.0% 

2036 78.21 3.7  $519,414  74.3% 

2037 81.30 3.9  $539,936  77.2% 

2038 84.03 4.0  $558,066  79.8% 

2039 86.43 4.1  $574,005  82.1% 

2040 88.03 4.2  $584,631  83.6% 

20 Year TOTAL 43.6 Crashes $6,684,643 48% 
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Table 12. Estimated number of crashes prevented and crash cost saved over time  
with 5-year mandate deployment scenario on a curve segment and  

with 8 target crashes expected without intervention (Ohio). 

Year 
Deployment 

(percent) 
Total crash 
prevented 

Crash cost 
saved 

Percentage 

2020 0.22 0 --   -- 

2021 1.79 0.1  $27,665  1.7% 

2022 5.34 0.4  $82,530  5.1% 

2023 10.33 0.8  $159,651  9.8% 

2024 16.08 1.2  $248,517  15.3% 

2025 22.14 1.7  $342,174  21.0% 

2026 28.29 2.2  $437,223  26.9% 

2027 34.42 2.6  $531,962  32.7% 

2028 40.43 3.1  $624,847  38.4% 

2029 46.25 3.5  $714,795  43.9% 

2030 51.84 3.9  $801,189  49.2% 

2031 57.14 4.3  $883,101  54.3% 

2032 62.10 4.7  $959,758  59.0% 

2033 66.70 5.1  $1,030,851  63.4% 

2034 70.92 5.4  $1,096,071  67.4% 

2035 74.76 5.7  $1,155,418  71.0% 

2036 78.21 5.9  $1,208,738  74.3% 

2037 81.30 6.2  $1,256,494  77.2% 

2038 84.03 6.4  $1,298,687  79.8% 

2039 86.43 6.6  $1,335,779  82.1% 

2040 88.03 6.7  $1,360,507  83.6% 

20 Year TOTAL 69.8 $15,555,956 47.8% 
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Table 13. Estimated number of crashes prevented and crash cost saved over time  
with 15-year organic deployment scenario on a curve segment and  
with 5 target crashes expected without intervention (Washington). 

Year 
Deployment 

(Percent) 
Total crash 
prevented 

Total crash 
cost saved 

Percentage 

2020 0.02 0  -   -- 

2021 0.09 0.0  $598  0.1% 

2022 0.31 0.0  $2,059  0.3% 

2023 0.83 0.0  $5,512  0.8% 

2024 1.81 0.1  $12,021  1.7% 

2025 3.38 0.2  $22,448  3.2% 

2026 5.60 0.3  $37,191  5.3% 

2027 8.49 0.4  $56,384  8.1% 

2028 11.99 0.6  $79,629  11.4% 

2029 16.03 0.8  $106,460  15.2% 

2030 20.49 1.0  $136,080  19.5% 

2031 25.27 1.2  $167,825  24.0% 

2032 30.25 1.4  $200,899  28.7% 

2033 35.35 1.7  $234,769  33.6% 

2034 40.47 1.9  $268,772  38.4% 

2035 45.53 2.2  $302,377  43.3% 

2036 50.47 2.4  $335,185  47.9% 

2037 55.23 2.6  $366,798  52.5% 

2038 59.77 2.8  $396,949  56.8% 

2039 64.04 3.0  $425,307  60.8% 

2040 68.15 3.2  $452,603  64.7% 

20 Year TOTAL 22.6 crashes $3,609,865 26% 
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Table 14. Estimated number of crashes prevented and crash cost saved over time  
with 15-year organic deployment scenario on a curve segment and  

with 8 target crashes expected without intervention (Ohio). 

Year 
Deployment 

(Percent) 
Total crash 
prevented 

Total crash 
cost saved 

Percentage 

2020 0.02 0  --   -- 

2021 0.09 0.0  $1,391  0.1% 

2022 0.31 0.0  $4,791  0.3% 

2023 0.83 0.1  $12,828  0.8% 

2024 1.81 0.1  $27,974  1.7% 

2025 3.38 0.3  $52,238  3.2% 

2026 5.60 0.4  $86,548  5.3% 

2027 8.49 0.6  $131,213  8.1% 

2028 11.99 0.9  $185,306  11.4% 

2029 16.03 1.2  $247,744  15.2% 

2030 20.49 1.6  $316,674  19.5% 

2031 25.27 1.9  $390,549  24.0% 

2032 30.25 2.3  $467,515  28.7% 

2033 35.35 2.7  $546,335  33.6% 

2034 40.47 3.1  $625,465  38.4% 

2035 45.53 3.5  $703,668  43.3% 

2036 50.47 3.8  $780,016  47.9% 

2037 55.23 4.2  $853,582  52.5% 

2038 59.77 4.5  $923,747  56.8% 

2039 64.04 4.9  $989,740  60.8% 

2040 68.15 5.2  $1,053,261  64.7% 

20 Year TOTAL 36.1 Crashes $8,400,584 26% 

 

 

  



27 

 

Large-Scale Consideration for Agency-Wide Deployment Levels 
As previously discussed, this analysis illustrates how interested agencies could focus on 
implementing CSW systems at those horizontal curve segments that have the most target 
crashes based on a three-year average of target crash occurrence.  For each individual curve 
segment, the agency can conduct a cost benefit analysis.  An agency may also want to set a goal 
for a systemic deployment (e.g., top five percent of all curves) or a goal for reducing the 
number of target crashes agency-wide (e.g., reduce target crashes by 50 percent agency-wide 
over twenty years).  For this broader scale consideration, the cumulative distribution of target 
crashes should be considered.  The research team conducted an analysis for all candidate curve 
segments in Washington and Ohio to demonstrate the benefit of these simple graphs.  To 
develop these graphs, an agency would need a listing of candidate curve segments and the 
average annual target crashes at each. 

Figure 3 and Figure 4 present the cumulative distribution of average annual total target crashes 
(total target crashes over three years divided by three) compared to the number of candidate 
curve segments that experienced at least one target crash in Washington and Ohio, 
respectively.  As shown on the graphs, 10 percent of these curve segments are responsible for 
nearly 30 percent of the total target crashes in Washington and Ohio. The percent is consistent 
for the two datasets.   

 

Figure 3. Relationship between cumulative number of horizontal curve segments and 
cumulative target crashes in Washington. 
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Figure 4. Relationship between cumulative number of horizontal curve segments and 
cumulative target crashes in Ohio. 

 

An agency may also want to consider the severity of the target crashes.  Translating the 
maximum injury severity of the crashes to crash costs is a useful way to account for severity in 
these graphs.  Figure 5 presents the cumulative distribution of annualized target crash costs 
compared to the number of candidate curve segments in Washington that experienced at least 
one target crash in the last three years.  The impact of deploying at the top 10 percent of curve 
segments is more poignantly expressed once severity is included.  The top 10 percent of curve 
segments represent over 80 percent of total target crash cost.  A similar graph for Ohio is 
presented in Figure 6.  The top 10 percent of curve segments represent more than 70 percent 
of total target crash cost in Ohio.  
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Figure 5. Relationship between cumulative number of horizontal curve segments and 
cumulative target crash cost in Washington. 
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Figure 6. Relationship between cumulative number of horizontal curve segments and 
cumulative target crash cost in Ohio. 

 

Difference in Candidate Curve Segments 
As discussed in the methodology section, the candidate curve segments with the most target 
crashes in a three year period were compared to other curve segments to identify any notable 
differences in the characteristics of the highest priority candidate curve segments to the other 
segments.  Specifically, in Washington there were 174 candidate curve segments that 
experienced three or more target crashes in a three-year period.  These candidate segments 
were compared to those that experienced two or less target crashes in the same three-year 
period.  There were 524 candidate curve segments in Ohio that experienced three or more 
crashes in a three-year period and similar comparisons were also made for Ohio data. 

This information is presented for the benefit of FHWA and their partners when relevant in any 
of the three datasets.  (Note that only notable differences are discussed.)  The implementing 
agencies may also find this useful for the preliminary screening of curve segments or to initiate 
systemic improvements. 
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Urban/rural 

The Washington dataset includes area type (urban/rural) information.  Although the Ohio 
dataset also has a variable indicating the area type of each road segment, a vast majority of this 
data element is missing.  This makes it impossible for identifying the area type in which a curve 
segment is located by using this variable alone.  After further examination of the data, the 
research team decided to use the variable related to roadway classification as an alternative 
source of information for rural or urban designation.  Table 15 and 16 show the comparison of 
urban/rural characteristics between the priority candidate curve segments and others curve 
segments in Washington and Ohio, respectively.  The results from both state are quite 
consistent and show that the priority candidate curve segments are more likely to be in an 
urban area.  This information might be helpful to agencies in the deployment process. 

 

Table 155. Comparison of urban/rural characteristics between priority candidate curve 
segments and other curve segments in Washington. 

Area Type 
Priority Candidate Curve Segments 

(3 or more target crashes) 
Other curve segments 

Rural 84.5% 95.2% 

Urban 15.5% 4.8% 

 

 

Table 16. Comparison of urban/rural characteristics between priority candidate curve 
segments and other curve segments in Ohio. 

Area Type 
Priority Candidate Curve Segments 

(3 or more target crashes) 
Other curve segments 

Rural 80.2% 92.1% 

Urban 19.8% 7.9 

 

 

 

Andersen, Carl (FHWA)
Is this correct?  The tables seem to indicate that majority of priority candidate curve segments are in rural area. 
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Traffic Volume 

The Washington and Ohio curve data files do not include AADT information.  However, the 
AADT values are available in the roadway files and the research team merged the AADT within 
each curve segments using route identifier and milepost information.  The AADTs for the 
priority candidate curve segments were compared to the remaining curve segments and 
presented in Table 17 and Table 18.  The priority candidate curve segments have higher average 
AADTs in both Washington and Ohio.  This is expected as higher volume present more 
opportunity for crashes. 

 

Table 17. Comparison of volume characteristics between priority candidate curve segments 
and other curve segment in Washington. 

Variable 
Priority Candidate Curve 

Segments (3 or more target 
crashes) 

Other curve segments 

AADT 
Minimum 279 Minimum 89 
Average 7,303 Average 3,277 
Maximum 37,138 Maximum 42,196 

 

Table 18. Comparison of volume characteristics between priority candidate curve segments 
and other curve segments in Ohio. 

Variable 
Priority Candidate Curve 

Segments (3 or more target 
crashes) 

Other curve segments 

AADT 
Minimum 150 Minimum 80 
Average 4,435 Average 2,300 
Maximum 40,870 Maximum 44,390 

 

Roadway Classification 

The roadway class was compared between the priority candidate curve segments and the other 
curve segments in Washington and Ohio.  The comparisons are summarized in Tables 19 and 
20.  A vast majority of curve segments are rural two-lane roads in both Washington and Ohio.  
However, as the results shown in Table 19 and Table 20, the priority candidate curve segments 
are less likely to be on rural two-lane roads when compared to the other curve segments.  
Overall, around 90 percent of curve segments are on rural two-lane roads but the percent of 
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priority candidate segments on rural two-lane roads is smaller – 72.4 percent and 80 percent 
for Washington and Ohio, respectively. 

Table 19. Comparison of roadway classification between priority candidate curve segments 
and other curve segment in Washington. 

 
Priority Candidate 

Curve Segments (3 or 
more target crashes) 

Other curve 
segments 

Overall 

Rural two-lane roads 72.4% 90.4% 89.6% 

Others 27.6% 9.6% 10.4% 

 

 

Table 20. Comparison of roadway classification between priority candidate curve segments 
and other curve segment in Ohio. 

 
Priority Candidate 

Curve Segments (3 or 
more target crashes) 

Other curve 
segments 

Overall 

Rural two-lane roads 80.0% 91.7% 90.8% 

Others 20.0% 8.3% 9.2% 

 

 

Speed Limit 

Both Washington and Ohio includes posted speed limit information in the HSIS roadway 
inventory data.  The posted speed of the two groups of curve segments were compared.  The 
Washington dataset includes curve segments with posted speeds that range from 25 mi/hr to 
70 mi/hr and the range of posted speeds in Ohio dataset is from 20 to 65 mi/hr.  Table 21 and 
Table 22 show the results for Washington Ohio, respectively.  However, the results appear 
counterintuitive.  The priority group included fewer curve segments with posted speeds of 50 
mi/hr or higher (70.7 percent of the priority curve segments versus 86.4 percent for the other 
curve segments in Washington and 76 percent versus 81.1 percent in Ohio).  One possible 
explanation could the fact that curves with lower posted speed limits often have less favorable 
conditions and are less forgiving for speeding.  Therefore, going over the posted speeds 
through horizontal curves with lower posted speeds is more likely to result in a crash than 
doing the same at curves with higher speed limits. 
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Table 21. Comparison of posted speeds between priority candidate curve segments and other 
curve segment in Washington. 

 
Priority Candidate 

Curve Segments (3 or 
more target crashes) 

Other curve 
segments 

Overall 

Posted Speed of 45 
mi/hr or lower 29.3% 13.6% 14.3% 

Posted Speed of 50 
mi/hr or higher 70.7% 86.4% 85.7% 

 

Table 22. Comparison of posted speeds between priority candidate curve segments and other 
curve segment in Ohio. 

 
Priority Candidate 

Curve Segments (3 or 
more target crashes) 

Other curve 
segments 

Overall 

Posted Speed of 45 
mi/hr or lower 24.0% 18.9% 19.3% 

Posted Speed of 50 
mi/hr or higher 76.0% 81.1% 80.7% 

 

  

Single Curve and Multi-curve segments 

The research team also examined the difference in number of single and multi-curve segments 
between the priority curve segments and the other segments.  Table 23 and Table 24 show 
summaries of the results for Washington and Ohio data.  In both states, a majority of the 
priority group are multi-curve segments (64.9 percent and 67.7 percent of priority group are 
multi-curve segments for Washington and Ohio, respectively). 
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Table 23. Comparison of single curve and multi-curve segments between priority candidate 
curve segments and other curve segments in Washington. 

 
Priority Candidate 

Curve Segments (3 or 
more target crashes) 

Other curve segments 

Total number of curve segments 174 3,719 

Number of multi-curve segments 113 1,026 

Percentage of multi-curve segments 64.9% 27.6% 

 

Table 24. Comparison of single curve and multi-curve segments between priority candidate 
curve segments and other curve segments in Ohio. 

 
Priority Candidate 

Curve Segments (3 or 
more target crashes) 

Other curve segments 

Total number of curve segments 524 6,493 

Number of multi-curve segments 355 2,956 

Percentage of multi-curve segments 67.7% 45.5% 

 

 

Degree of curve 

The degree of curve was examined and compared between priority curve segment and other 
groups.  Specifically, the team calculated and compared the average degree of curve and 
maximum degree of curve.  In the case of single-curve segments, the average and maximum 
values for each segment are the same.  For multi-curve segments, the average degree of curve 
is arithmetic mean of all curves within each segment.  Similarly, the maximum degree of curve 
is the largest value among those constituent curves.  The comparisons summarized and 
presented in Table 25 and Table 26 for Washington and Ohio, respectively.  As expected, the 
priority curve segments have large values in both average and maximum degree of curves when 
compared to the other curve segments. 
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Table 25. Comparison of degree of curve between priority candidate curve segments and 
other curve segments in Washington. 

Variable 
Priority Candidate Curve 

Segments (3 or more target 
crashes) 

Other curve segments 

Average degree of curve 
Minimum 0.11 Minimum  0.13 
Average 8.64 Average  5.23 
Maximum 81.85 Maximum 100.52 

Maximum degree of curve 
Minimum 0.11 Minimum  0.13 
Average 13.84 Average 6.30 
Maximum 130.22 Maximum 163.7 

 

 

Table 26. Comparison of degree of curve between priority candidate curve segments and 
other curve segments in Ohio. 

Variable 
Priority Candidate Curve 

Segments (3 or more target 
crashes) 

Other curve segments 

Average degree of curve 
Minimum  2 Minimum 1 
Average 11.51 Average 10.68 
Maximum 29.00 Maximum 89.3 

Maximum degree of curve 
Minimum 2 Minimum 1 
Average 15.10 Average 12.64 
Maximum 64 Maximum 90 
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CONCLUSIONS AND DISCUSSION  
This report presents a method for State or local agencies to screen horizontal curves and 
develop a first prioritization of these curve segments for deployment of a vehicle-to-
infrastructure Curve Speed Warning (CSW) system.  This effort was based on data from 
Washington and Ohio.  The effort included several assumptions for ease of analysis and to 
demonstrate the approach including the system effectiveness, vehicle penetration rates, and 
crash levels that are expected stay the same over time if no intervention is implemented.  
Additionally, three system cost scenarios were presented.  All of these assumptions were inputs 
to the analysis and can be changed as more refined inputs are available. 

Based on the analysis conducted, the following process could be used by agencies in identifying 
potential horizontal curve segments for the installation of V2I CSW systems: 

Step 1.  Identify horizontal curve segments  

This analysis used two States that maintain a horizontal curve inventory that provided 
information on horizontal curves.  Without such an inventory, agencies can use local 
knowledge, or manual review of aerial maps or photo logs to identify these horizontal curves 
and determine the key curve characteristics.  (In absence of any horizontal curve 
information, the agency could also conducted a curve-related crash cluster analysis to find 
curves by identifying clusters in the police-reported crash data of crashes identified as curve 
related.) 

Step 2.  Attribute Crashes to horizontal curve segments 

This is generally done by identifying crashes within and 250 ft beyond both ends of each 
curve segment.  The process might vary by agency and the method should reflect agency 
practices for similar efforts.  The target crashes for the CSW system are run-off-road, roll-
over and multi-vehicle, opposite directions. 

Step 3.  Remove curves Improved in the Last Three Years or Planned for Future Improvement 

This step will likely require an agency to seek additional information beyond what is available 
in a roadway inventory.   

Step 4.  Determine a Method to Identify Target Crashes in Crash Data 

Target crashes for this application are those resulting from vehicles traveling through a curve 
faster than a safe speed and losing control.  The vehicle departs its travelled lane and then 
runs off road or rolls over or collides with another vehicle travelling in the opposing 
direction.  Based on the analysis conducted here, this should be defined in the crash data 
using information on the involved vehicles including manner of the crashes (i.e. run-off-road, 
roll-over or colliding with motor vehicle in transport), number of vehicles involved, and some 
information on either the movement preceding the crash or the accident type.  Some 



38 

 

dataset might have information indicating if a crash is curve-related.  This might be very 
helpful in determining crashes on curves. 

Step 5.  Calculate Three-Year Average Annual Target Crashes and Target Crash Costs  

Using the three most recent years of available crash data, calculate the average number of 
target crashes on each horizontal curve segments and the average annual cost of the target 
crashes.  The research team suggests that agencies include all severities in their screening 
efforts and apply the crash costs presented in this report (or their own agency developed 
costs) by severity to calculate the costs.   

Step 6.  Combine curve segments into Related Groups (Optional) 

If desired, the agency could use several variables to group curve segments including number 
of lanes, number of curves (single-curve or multi-curve segments) and area type 
(urban/rural).  Groups of 30 segments or more is a reasonable base.  The purpose of this step 
is to identify groups that may need separate consideration, particularly if separate funds are 
available for certain function classes such as rural two-lane roads.   

Step 7.  Develop Prioritized List 

The analysis here developed a prioritized list based on a three-year average of target crash 
frequency.  The list could also be prioritized by the monetized cost of the target crashes or 
subdivided by the groups identified in step 6.   

This method is based on the reported crashes and operational and geometric data available in a 
horizontal curve and roadway inventory.  The agency would use this list as an initial step in their 
efforts.  The next step in prioritization would likely involve a detailed review (including field 
collection and observations) of horizontal curves that the agency intends to move forward.  The 
costs for individual curve systems would be compared to the monetized benefit of the crashes 
that the system is expected to prevent.  The ability of the system to prevent crashes will 
increase every year as more and more vehicles are equipped.   

There are additional considerations that an agency may have in prioritizing curve segments for 
these systems that could be incorporated into the initial prioritization efforts.  The largest 
consideration is the agency’s existing future plans for the curve.  For example, if the curve is 
part of a planned large-scale improvement such as a large corridor improvement program, the 
agency may remove the curve from consideration for the system or consider how the system 
implementation could be scheduled as part of other construction at the curve.  Other 
considerations may include equity by district or region. 
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APPENDIX A:  DATA ELEMENTS 

 

HSIS Data Elements for Analysis: Washington 
 
Washington Accident Subfile 

Variable Name Description 
ACCTYPE ACCIDENT TYPE 
CASENO CASE NUMBER 
COLTYPE1 COLLISION TYPE 1 
COLTYPE2 COLLISION TYPE 2 
COUNTY COUNTY NUMBER 
DISTRICT DISTRICT NUMBER 
FUNC_CLS FUNCTIONAL CLASS 
IMPACT IMPACT LOCATION 
LIGHT LIGHT CONDITION 
LOC_CHAR LOCATION CHARACTERISTICS 
LOC_TYPE ACC LOCATION TYPE 
MILEPOST ACCUM ROUTE MILEPOST (ARM) 
NO_PEDS NUMBER OF PEDESTRAINS 
NUMVEHS NUMBER OF VEH 
OBJECT1 OBJECT STRUCK 1 
OBJECT2 OBJECT STRUCK 2 
RD_CHAR1 ROADWAY CHARACTERISTICS 
RD_INV ROADWAY INVENTORY 
RD_REL ON/OFF ROAD 
RDSURF ROADWAY SURFACE 
REPORT ACC SEVERITY 
RODWYCLS ROADWAY CLASS 
RTE_NBR STATE ROUTE NUMBER 
RUR_URB RURAL URBAN 
SEVERITY MOST SEVERE INJURY 
TIME ACCIDENT TIME 
V1CMPDIR V1 COMPASS DIRECTION 
V2CMPDIR V2 COMPASS DIRECTION 
V1DIRCDE V1 DIRECTION 
V2DIRCDE V2 DIRECTION 
V1EVENT1 V1 MOVEMENT 
V2EVENT1 V2 MOVEMENT 
WEATHER WEATHER CONDITION 
WEEKDAY DAY OF WEEK 
WKZONE WORK ZONE STATUS 
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Washington Vehicle Subfile 

 
Variable Name Description 
CASENO ACC REPORT NUMBER 
CONTRIB1 DRV CONTRIB CIRCUMS 1 
CONTRIB2 DRV CONTRIB CIRCUMS 2 
DRV_ACTN DRIVER ACTION 
EVENT1 SEQUENCE OF EVENTS 1 
EVENT2 SEQUENCE OF EVENTS 2 
EVENT3 SEQUENCE OF EVENTS 3 
EVENT4 SEQUENCE OF EVENTS 4 
MISCACT1 DRV MISC ACTION 1 
MISCACT2 DRV MISC ACTION 2 
SPDLIMIT VEH POSTED SPEED 
TRF_CNTL VEH TRAFFIC CONTROL 
VEHNO VEHICLE NUMBER 

 

 

Washington Roadway File 

 
Variable Name Description 
AADT AVERAGE ANNUAL DAILY TRAFFIC 
BEGMP  BEGINNING MILEPOST 
CITY CITY NUMBER 
CNTL_SEC CONTROL SECTION 
COUNTY COUNTY NUMBER 
DISTRICT DISTRICT NUMBER 
ENDMP CALCULATED ENDING MILEPOST 
EW_IND EAST WEST IND 
FUNC_CLS FEDERAL FUNC CLASS 
LANEWID CALCULATED LANE WIDTH 
LSHL_TY2 LEFT SHOULDER TYPE RD2 
LSHL_TYP LEFT SHOULDER TYPE RD1 
LSHL_WD2 LEFT SHOULDER WIDTH RD2 
LSHLDWID LEFT SHOULDER WIDTH RD1 
MED_TYPE MEDIAN TYPE 
MEDWID MEDIAN WIDTH 
NO_LANE1 NUMBER LANES INC 
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Variable Name Description 
NO_LANE2 NUMBER LANES DEC 
NO_LANES TOTAL NUMBER OF LANES 
PGRP_DT POPULATION GROUP DATE 
POP_GRP CITY POPULATION 
RD_LIGHT INTERSECTION ILLUM-ND 
RD_SRMP RDWY STATE ROUTE MP 
RD_TYPE RELATED RD TYPE 
RDWY_WD1 ROADWAY WIDTH RD 1 
RDWY_WD2 ROADWAY WIDTH RD 2 
RDWY_WID TOTAL ROADWAY WIDTH 
ROAD_INV ROUTE TYPE ID 
RODWYCLS ROADWAY CLASSIFICATION 
RSHL_TY2 RIGHT SHOULDER TYPE RD2 
RSHL_TYP RIGHT SHOULDER TYPE RD1 
RSHL_WD2 RIGHT SHOULDER WIDTH RD2 
RSHLDWID RIGHT SHOULDER WIDTH RD1 
RTE_NBR ROUTE NUMBER 
RURURB RURAL URBAN 
SEG_LNG RD CALCULATED SECT LNGTH 
SPD_LIMT LEGAL SPEED LIMIT 
ST_FUNC STATE FUNC CLASS 
TERRAIN TERRAIN TYPE 
TRF_CNTL INTERSECTION CONTROL TYPE 
TRKPCTS TRUCK PERCENTAGE 

 

 

 

Washington Curve File 

 
Variable Name Description 
BEGMP HORIZ CURVE BEGIN MLPOST 
CURV_ANG HORIZ CURVE CENTER ANGLE 
CURV_INV STATE ROUTE TYPE ID 
CURV_MAX HORIZ CURVE MAX SUPER 
CURV_NUM HORIZ CURVE CONTRACT NUM 
CURV_RAD HORIZ CURVE RADIUS 
DEG_CURV DEGREE OF CURVATURE 
DIR_CURV HORIZ CURVE DIRN 
ENDMP HORIZ CURVE END MLPOST 
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LEGAL_SP LEGAL SPEED LIMIT 
OVERLAP CURVE OVERLAP IND 
RTE_NBR ROUTE NUMBER 
SEG_LNG HORIZ CURVE LGT (MI) 

 

 

HSIS Data Elements for Analysis: Ohio 
 
 
Ohio Accident file 
 

Variable Name Description 
ACC_DATE ACCIDENT DATE YYYYMMDD 
ACCTYPE TYPE OF CRASH(FIRST HARMFUL EVENT) 
ACCYR ACCIDENT YEAR 
ANGLE TURN CRASH INDICATOR 
CASENO UNIQUE ACCIDENT CASE NUMBER 
CNTYRTE COUNTY ROUTE 
COUNTY COUNTY 
DISTRICT DISTRICT 
DIV_CODE ROAD IDENTIFICATION 
FAULT VIOLATOR 
FIPSMUNI FIPS CODE 
FLIP_IND INDICATES DUPLICATE RECORD GENERATION 
FRWY_IND FREEWAY / NON-FREEWAY INDICATOR 
FUNCLS FUNCTIONAL CLASSFICATION 
HOUR HOUR OF DAY 
LIGHT LIGHT CONDITION 
LOC_TYPE LOCATION 
MILEPOST MILEPOST 
NO_LANES NUMBER OF LANES 
NUMPEDS NUMBER OF PEDESTRIANS 
NUMVEHS NUMBER OF VEHICLES 
POP_GRP POPULATION 
REL_RD RELATION TO ROADWAY 
RD_CHAR1 CONTOUR OF ROADWAY 
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Variable Name Description 
RDSURF ROAD CONDITION 
RODWYCLS ROAD TYPE 
RTE_NBR ROUTE NUMBER 
SEVERITY CRASH SEVERITY (GENERATED) 
STREET_1 STREET ON 
STREET_2 STREET AT/CROSS ROUTE 
WEATHER WEATHER CONDITION 
WEEKDAY DAY OF WEEK 

 

 

 

Ohio Vehicle Subfile 

 

Variable Name Description 
CASENO UNIQUE ACCIDENT CASE NUMBER 
CONTRIB1 CONTRIBUTING FACTOR OF VEHICLE 
DIR_TRVL DIRECTION OF VEHICLE 
EVENT1 SEQUENCE OF EVENTS 1 
EVENT2 SEQUENCE OF EVENTS 2 
EVENT3 SEQUENCE OF EVENTS 3 
EVENT4 SEQUENCE OF EVENTS 4 
F_HARM FIRST HARMFUL EVENT 
MISCACT1 PRE-CRASH ACTIONS 
MOSTHARM MOST HARMFUL EVENT 
MOVMNT MOVEMENT OF VEHICLE 

NUMVEH NUMBER OF VEHICLES 

SPD_LIMT SPEED LIMIT OF ROAD 
VEH_N_FROM VEHICLE/NON-MOTORIST DIRECTION FROM 
VEH_N_TO VEHICLE/NON-MOTORIST DIRECTION TO 
VEHNO VEHICLE NUMBER 
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Ohio roadlog file 

Variable Name Description 
AADT WEIGHTED AVERAGE TOTAL ADT 
AADT_YR YEAR OF ADT COUNTS 
ACCESS ACCESS CONTROL 
BEGMP BEGINNING MILE POST 
CNT_TLOG COUNTY TRUE LOG 
CNTY_RTE COUNTY ROUTE 
COUNTY COUNTY 
DISTRICT DISTRICT 
DIVIDED DIVIDED/UNDIVIDED 
ENDMP END MILE POST 
FUNC_CLS FUNCTIONAL CLASS 
MED_TYPE FHWA MEDIAN TYPE 
MED_WID MEDIAN WIDTH 
NO_LANES NUMBER OF LANES 
PAV_ROUG PAVEMENT ROUGHNESS 
PAVECOND PAVEMENT CONDITION 
POP_GRP POPULATION 
RD_WIDTH ROADWAY WIDTH THRU LANES N/MEDIANS 
RODWYCLS ROADWAY TYPES 
RTE_NBR STATE ROUTE NUMBER 
RTE_SUFX STATE ROUTE NUMBER SUFFIX 
RTE_TYPE ROUTE TYPE 
RURUID POPULATION (OVE/UNDER 5000) 
SEG_LNG SEGMENT LENGTH 
SEQ_NBR SEQUENCE NUMBER 
SHWD_LEFT_INSIDE SHOULDER LEFT INSIDE 
SHWD_LEFT_OUTSIDE SHOULDER LEFT OUTSIDE 
SHWD_RIGHT_INSIDE SHOULDER RIGHT INSIDE 
SHWD_RIGHT_OUTSIDE SHOULDER RIGHT OUTSIDE 
SPDLIMT SPEED LIMIT 
STN_SUF STREET NAME SUFFIX 
STR_PFX STREET NAME DIRECTIONAL PREFIX 
STRT_DIR STREET NAME DIRECTIONAL SUFFIX 
STRT_NAM STREET NAME 
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Variable Name Description 
SURF_TYP STANDARD SURFACE CLASSIFICATION 
SURF_WID SURFACE WIDTH THRU LANES N/SHOULDERS 
SURFWIDL LEFT SIDE SURFACE WIDTH IN FEET 
SURFWIDR RIGHT SIDE SURFACE WIDTH IN FEET 

 

Ohio Curve file 

Variable Name Description 
BEGMP BEGIN LOG POINT OF CURVE 

CNTY_RTE COUNTY ROUTE 

COUNTY COUNTY 

DEG_CURV DEGREE OF CURVE 

DESC DESCRIPTION 

DIR_CURV DIRECTION OF CURVE 

DIVIDED DIVIDED HIGHWAY INDICATOR 

ENDMP END LOG POINT OF CURVE 

FUNC_CLS FUNCTIONAL CLASS 

NO_LANES NUMBER OF LANES 

RTE_NBR STATE ROUTE NUMBER 

RTE_SUFX STATE ROUTE SUFFIX 

SEG_LNG SEGMENT LENGTH 
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APPENDIX B:  SAFETY PERFORMANCE FUNCTION AND EMPIRICAL BAYES (EB) CALCULATION 

 

Safety Performance Function for single-curve segments 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3𝑦𝑦𝑦𝑦𝑦𝑦 = 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝛽𝛽1
× 𝑒𝑒(𝛽𝛽2×𝐿𝐿𝐿𝐿𝐿𝐿+𝛽𝛽3×𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝛽𝛽4×𝐿𝐿𝐿𝐿11𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿+𝛽𝛽5×𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+𝛽𝛽6×𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+𝛽𝛽7×𝑆𝑆𝑆𝑆𝑆𝑆50𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝛽𝛽8) 

Coefficient 
Description Estimated 

value 
Standard 

Error 

β1 Average AADT over 3 years (veh/day) 0.707 0.047 

β2 Indicator for level terrain -0.163 0.120 

β3 Shoulder width (ft) -0.072 0.021 

β4 Indicator for 11 ft or narrower lane-width 0.169 0.087 

β5 Horizontal curve angle (degree) 3.12E-03 2.34E-03 

β6 Horizontal curve radius (ft) -4.64E-05 1.61E-05 

β7 
Indicator for posted speed of 50 mi/hr or 
higher -0.352 0.132 

β8 Intercept -3.853 0.426 

k Dispersion parameter 0.928 0.128 
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Safety Performance Function for multi-curve segments 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3𝑦𝑦𝑦𝑦𝑦𝑦
= 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝛽𝛽1 × 𝑒𝑒(𝛽𝛽2×𝐿𝐿𝐿𝐿𝐿𝐿+𝛽𝛽3×𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝛽𝛽4×𝐿𝐿𝐿𝐿11𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿+𝛽𝛽5×𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+𝛽𝛽6×𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+𝛽𝛽7×𝑆𝑆𝑆𝑆𝑆𝑆50𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝛽𝛽8×𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝛽𝛽9) 

 

Coefficient 
Description Estimated 

value 
Standard 

Error 

β1 Average AADT over 3 years (veh/day) 0.855 0.047 

β2 Indicator for level terrain -0.241 0.145 

β3 Shoulder width (ft) -0.067 0.024 

β4 Indicator for 11 ft or narrower lane-width 0.209 0.087 

β5 Average horizontal curve angle (degree) 8.77E-03 2.53E-03 

β6 Maximum horizontal curve radius (ft) -2.55E-04 5.26E-05 

β7 
Indicator for posted speed of 50 mi/hr or 
higher 0.242 0.106 

β8 Number of horizontal curves -0.016 0.007 

β9 Intercept -5.852 0.439 

k Dispersion parameter 0.462 0.076 

 

The variables are defined as follows: 

• Target3yrs is the predicted number of crashes on each horizontal curve segment 
(crashes/3 years) 

• AADT is the average annual daily traffic through the curve segment (both directions, 
veh/day) 

• LVL is an indicator variable for level terrain (=1 if the curve segment is in a level area, =0 
otherwise) 

• SHDWD is the paved shoulder width of the curve segment (ft) 
• LN11LESS is an indicator variable for 11 ft or narrower lane (=1 if lane-width is 11 ft or 

narrower, =0 otherwise) 
• MNANG is the curve angle of single-curve segment or average curve angle of multi-

curve segment (degree) 
• MNRAD is the curve radius of single-curve segment or average curve radius of multi-

curve segment (ft) 
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• SPD50PLUS is an indicator variable for posted speed of 50 mi/hr on curve segment (=1 if 
the posted speed limit on the mainline is 50 mi/hr or higher, =0 otherwise) 

• CURV is number of horizontal curves in the curve segment (for multi-curve segments 
only) 

 

Empirical Bayes (EB)-adjusted number of expected crashes: 

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑤𝑤 ∗ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + (1 − 𝑤𝑤) ∗ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

Where: 

• Nexpected is the EB-adjusted number of expected crashes 
• Npredicted is the number of crashes predicted by the Safety Performance Function 
• w is SPF weight, accounting for the accuracy of the SPF prediction: 

𝑤𝑤 =
1

1 + 𝑘𝑘 ∗ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

• k is the dispersion parameter of the SPF model 
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APPENDIX C: SPEARMAN’S RANK CORRELATION 

 

The Spearman’s rank correlation coefficient measures the statistical association between two 
rank variables. It is a non-parametric version of the Pearson correlation coefficient. The value of 
Spearman’s coefficient ranges from -1 to +1 with the sign of the coefficient indicating the 
direction of the relationship. If a variable increases and the other variable also tends to 
increase, the association is represented by a positive value. If a variable increases while the 
other variable tends to decrease, the inverse relationship is presented by a negative value of 
the Spearman’s coefficient. A Spearman’s coefficient of +1 or -1 represents a perfect 
correlation, either on the positive or negative sides. When the coefficient increases in 
magnitude (closer to +1 or -1), the association between the two rank variables get stronger. 

The Spearman’s coefficient is calculated by the following equation: 

𝜌𝜌𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅)

𝜎𝜎𝑅𝑅𝑅𝑅𝜎𝜎𝑅𝑅𝑅𝑅
 

Where 

• ρRX,RY is the Spearman’s correlation coefficient between two rank variables RX and RY 
• COV(RX,RY) is the covariance of the rank variables RX and RY 
• σRX is the standard deviation of rank variable RX 
• σRY is the standard deviation of rank variable RY 

If there are no ties in both rank variables, the coefficient can also be calculated by the 
following: 

𝜌𝜌𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅 = 1 −
6∑𝑑𝑑𝑖𝑖2

𝑛𝑛3 − 𝑛𝑛
 

Where: 

• dI is the difference between two ranks, dI=RX-RY 
• n is the number of observations 
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